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Introduction

• Challenge
• Efficient Resource Allocation in Edge - Cloud Environments

• Problem
• How to dynamically balance performance requirements, energy efficiency, 

and system constraints

• Heterogeneous computing devices (CPUs, GPUs, FPGAs), workload 
diversity, multiple configuration options

• Our Focus is on ML workloads

• Approach
• Adaptive Reinforcement Learning (RL)-based congiruation engine in 

multicore CPUs in cloud nodes.
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System Architecture

Key components 

• A system manager that constantly 
monitors the system and accepts new job 
requests.

• An RL architecture to guide resource 
allocation and configuration decisions
based on the State of the system

• Telemetry collectors to capture HW 
metrics and Action adapters to apply any 
needed configuration.

• Heterogeneous node architecture 
comprising CPUs, GPUs, FPGA

Note: Only multicore CPUs in this work
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Reinforcement Learning Agent

• RL is a type of ML algorithm 
where an Agent learns how to 
take Actions by interacting with 
the Environment to maximize a 
cumulative Reward.

• Our objective is to reduce power 
dissipation without exceeding a 
user-defined execution latency. 

• Reward function penalizes 
Actions that result in high latency 
(1st criterion) and high power 
(2nd criterion)
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Experimental Set up

• Datacenter-grade node consisting of a dual-socket AMD EPYC, 64 physical (128 
logical) cores

• 1-100 Logical cores actually used

• Metrics recorded using Open Telemetry tools

• Containerized ResNet used as workload 

• Trained the RL agents using 200,000 timesteps & offline.
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Experimental Evaluation (I)

Set Application Latency Target 𝐴𝑇 for batch inference to 7ms

• optimal configuration when 25 logical cores are allocated to run ResNet in parallel 

• beyond that, performance stagnates while power (obviously) increases

ML4ECS Workshop - HiPEAC 2025 6



Experimental Evaluation (II)

Experiments for various Application Latency Targets 𝐴𝑇

RL agent achieves allocations which are very close to the optimal allocations 
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Application 

Latency Target 

(ms)

Predicted 

Configuration

(Cores to allocate)

Handpicked 

configuration

(Cores to allocate)

5 57 61

7 25 25

10 35 34

15 10 11



Conclusion and Future Work

• RL models achieve near-optimal core allocation for performance-
constrained ML inference having power dissipation as optimization 
criterion

• The node-level manager is part of a larger mechanism that implements 
the MAPE model (Monitor, Analyze, Plan, Execute) at the Cloud-Edge 
continuum

• Future Work (node-level) 
• Use on Hardware accelerators (GPUs, FPGAs)

• Thread affinity, voltage/frequency scaling

• Different versions of the ML workload spanning performance vs accuracy

• Carbon intensity as additional optimization criterion

• Data collection
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Thank you!

January 22, 2025
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