



## Managing Computational Resources with Machine Learning Policies

#### **Alexandros Patras**

Computer Systems Lab (CSL) Department of Electrical and Computer Engineering University of Thessaly, Greece



This project has received funding from the European Community's Horizon Europe Programme under Grant Agreement #101092912.





### Introduction



- Challenge
  - Efficient Resource Allocation in Edge Cloud Environments
- Problem
  - How to dynamically balance performance requirements, energy efficiency, and system constraints
  - Heterogeneous computing devices (CPUs, GPUs, FPGAs), workload diversity, multiple configuration options
  - Our Focus is on ML workloads
- Approach
  - Adaptive Reinforcement Learning (RL)-based congiruation engine in multicore CPUs in cloud nodes.



## System Architecture



#### **Key components**

- A system manager that constantly monitors the system and accepts new job requests.
- An **RL architecture** to guide resource allocation and configuration decisions based on the State of the system
- **Telemetry** collectors to capture HW metrics and **Action** adapters to apply any needed configuration.
- Heterogeneous node architecture comprising CPUs, GPUs, FPGA Note: Only multicore CPUs in this work











- Datacenter-grade node consisting of a dual-socket AMD EPYC, 64 physical (128 logical) cores
- 1-100 Logical cores actually used
- Metrics recorded using Open Telemetry tools
- Containerized ResNet used as workload
- Trained the RL agents using 200,000 timesteps & offline.





## Experimental Evaluation (I)



Set Application Latency Target  $A_T$  for batch inference to 7ms

- optimal configuration when 25 logical cores are allocated to run ResNet in parallel
- beyond that, performance stagnates while power (obviously) increases



**Application Metric vs Power Consumption** 

ML4ECS Workshop - HiPEAC 2025



## Experimental Evaluation (II)



Experiments for various Application Latency Targets  $A_T$ 

RL agent achieves allocations which are very close to the optimal allocations

| Application    | Predicted           | Handpicked          |
|----------------|---------------------|---------------------|
| Latency Target | Configuration       | configuration       |
| (ms)           | (Cores to allocate) | (Cores to allocate) |
| 5              | 57                  | 61                  |
| 7              | 25                  | 25                  |
| 10             | 35                  | 34                  |
| 15             | 10                  | 11                  |



## Conclusion and Future Work



- RL models achieve near-optimal core allocation for performanceconstrained ML inference having power dissipation as optimization criterion
- The node-level manager is part of a larger mechanism that implements the MAPE model (Monitor, Analyze, Plan, Execute) at the Cloud-Edge continuum
- Future Work (node-level)
  - Use on Hardware accelerators (GPUs, FPGAs)
  - Thread affinity, voltage/frequency scaling
  - Different versions of the ML workload spanning performance vs accuracy
  - Carbon intensity as additional optimization criterion
  - Data collection





# Thank you!