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Abstract—Efficiently allocating computational resources for
deep learning applications is a key challenge in cloud and
edge environments. These applications can perform inference
on multi-core CPUs, hardware accelerators, or resource con-
strained Edge devices, allowing for scalable performance and
energy efficiency. However, deciding the optimal configuration
is a complex undertaking. This paper proposes an adaptive,
lightweight scaling engine for energy-efficient deep learning
inference on a dual-socked cloud node with multicore CPUs.
Using a custom reinforcement learning algorithm, it continu-
ously learns to identify the most efficient execution configura-
tion based on the neural network characteristics and available
system resources.

1. Introduction
Machine learning inference workloads vary widely when

executed on heterogeneous computing devices, differing in
performance, power efficiency, communication overhead,
and user/environmental constraints. For example, some com-
ponents may run more efficiently on GPUs, FPGAs, or
TPUs, while others benefit from CPU execution to minimize
communication overhead. Inefficient scheduling across these
resources can lead to missed deadlines and reduced effi-
ciency. Additionally, modern ML models offer configuration
options—such as different versions, quantization bitwidths,
and pruning ratios—to balance inference latency and model
accuracy.

This paper introduces reinforcement learning (RL)
mechanisms to enable efficient ML inference on a datacenter
compute node by dynamically allocating CPU cores to
inference jobs to minimize power dissipation under various
latency constraints. We demonstrate the feasibility of our
approach by running a widely used workload on a real cloud
node consisting of dual socket multicore CPUs.

2. System Design

2.1. Architecture
The system follows the Monitor-Analyse-Plan-Execute

(MAPE) model for autonomic systems [1]. Our work adapts
the MAPE model, by building a managing system com-
prising the following functional components, illustrated in

Figure 1: i) a state component responsible for assimilating
input from external sources, such as administrator policies,
energy costs or even carbon intensity from the electricity
grid, in addition to receiving job-related data and incorpo-
rating system state information obtained through telemetry
subsystems. This data describes the state of the platform and
the applications. ii) A machine learning agent tasked with
data analysis and decision making. iii) A node manager that
creates optimal plans based on the current resource state,
aided by the output of the machine learning module. iv)
Action adapters that implement the plan of task allocation
and resource configuration by directly interfering with the
underlying compute node.
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Figure 1. High-level architecture overview.

2.2. Conguration Action Space
The Node Manager in Figure 1 operates in the following

three dimensions:
Task Scheduling: Determines the specific timing when

each job will utilize the computational resources.
Resource Allocation: Specifies the computational re-

source assigned to each job and tackles the challenge of
optimizing software/hardware accelerator co-scheduling.

Application Version: With multiple versions of the
same application job, each with different performance, Qual-
ity of Results (QoR), or energy consumption, node manager
selects the most suitable version, balancing the other two
factors.



3. Machine Learning Policy
In our exploration of optimizing resource allocation,

we opted to use a reinforcement learning (RL) model.
RL is a machine learning approach focused on learning a
sequence of decisions to maximize cumulative rewards [2].
The primary objective of the RL agent is to determine an
optimal or near-optimal task allocation. To accomplish this
goal, a suitable reward function is necessary to direct the
RL agent in achieving the application requirements without
over-provisioning and exceeding (beyond what is minimally
required) the allocated computation resources and power
consumption.

In Equation 1, we present the reward utilized in the
proof-of-concept evaluation to train the RL agent, based on
relevant prior work [3].

reward =

{
−100 if AM > AT

−
√
PowerC if AM ≤ AT

(1)

The AM term is the average inference latency (per image)
across the batch of the processed images. AT corresponds
to the application target set by the application job. The RL
agent’s primary goal is to allocate sufficient resources to
meet this target; failing to do so results in a significant
penalty. Once the target is met, the agent is rewarded based
on the PowerC term, representing the power consumed by
the allocated resources. Lower power consumption incurs a
greater reward.

The state of the RL agent includes a variety of node-
level metrics captured via the telemetry system, specifically
(i) the average CPU utilization for each logical core, (ii) the
CPU latency to run ML inference potentially dividing this
task across multiple CPU cores in both sockets, and (iii)
the power dissipation per core to perform this task (Table
1). The action of the RL agent is to decide how many and
which CPU cores will be allocated to run inference on a
new batch of images.

4. Experimental Evaluation
To validate our design, we have developed a proof-of-

concept RL agent, that was trained to determine an optimal
ML task allocation across CPU cores using the reward
function shown in Equation 1.

In this experiment, a containerized ResNet model [4], a
pre-trained convolutional neural network for image classifi-
cation, was used to process batches of images. The container
ran for 60 seconds on a datacenter-grade compute node
with dual AMD EPYC processors (64 physical cores, 128
logical cores). Real-time telemetry data were gathered and
stored using OpenTelemetry [5], with parameters detailed in
Table 1. Logical cores used ranged from 1 to 100.

In each run, different core count were allocated for the
container. Figure 2 shows the execution time (left axis) and
the dissipated power (right axis) assuming a target execution
time of 7ms. The execution time is the average inference la-
tency over multiple images. The inference latency decreases
by utilizing more cores, increasing the power consumption
at the same time, however, there is a point at around 20

TABLE 1. TELEMETRY METRICS RECORDED.

Metric Values range [Units]
Average CPU utilization for each
logical core

0.00 - 1.00 [%]

Total Average CPU Power Con-
sumption for both sockets

90.00 – 388.00 [Watts]

Application metric (Inference la-
tency)

4.00 – 115.00 [ms]

cores where the latency does not improve further, but the
power consumption continues to increase.
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Figure 2. Telemetry metrics concerning the number of cores allocated. An
example of a handpicked optimal configuration is shown with the arrow
for an application target of 7ms (indicated by the green dashed line).

Using offline recorded telemetry data, we trained RL
agents with varying application targets. Utilizing real-time
telemetry data, online training is an option; however, the
extensive training duration makes it impractical for initial
training. Table 2 shows results for four application targets
using the same dataset. After training each agent for 200,000
timesteps, optimal results were achieved in 75% of cases.
The exception was the latency target of 5ms, which neared
the CPU’s performance limit across many configurations.
TABLE 2. OPTIMAL AND PREDICTED CONFIGURATION FOR THE CORE

ALLOCATION.

Latency Target
(ms)

ML Predicted
Configuration

Optimal
Handpicked

Configuration
5 55 61
7 25 25
10 14 15
15 10 11

5. Conclusions & Future Work
The node level RL model presented in this paper de-

termines an optimal CPU core allocation to optimize power
dissipation and, at the same time, satisfy application latency
constraints. In the future this model will be enhanced to
incorporate several new features to be used by the RL
agent for task allocation and core configuration: i) usage
of hardware accelerators (GPUs, FPGAs), ii) thread affinity
and simultaneous multithreading, and (iii) voltage/frequency
scaling of the CPU cores and the hardware accelerators.
Another potential direction for future research is applying
the same reinforcement learning (RL) approach to different
environments, such as varying hardware characteristics.
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