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Edge Intelligence and Decentralized DNN

• Integration of AI into edge devices, enabling computation 
closer to data sources

• Collaborative learning mechanism composed of software 
agents, robots, sensors, and computer systems that can 
collaborate effectively

• Computation and decision-making is distributed across multiple 
nodes or devices in a network (no central node)

• Nodes can cooperate for DNN training or inference

• Advantages in
▪ Scalability 
▪ Data privacy
▪ Robustness
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Knowledge Distillation (KD)

• KD is a machine learning technique designed to transfer knowledge from a large, complex model 
(Teacher model) to a smaller, more efficient one (Student model)

• The Student model learns to mimic the behavior of the Teacher (i.e., its outputs or internal 
representations)

• Key benefits:
▪ Model Compression 
▪ Faster inference
▪ Improved generalization 
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KD - Information Exchange Mechanism

The student model is trained using two types of losses:
▪ Fully-supervised loss (ℒ𝑠𝑡𝑢)

- Encourage the student’s “hard” prediction  to align closely 
with the ground-truth labels of the input samples

- Uses original training data 

▪ Distillation loss (ℒKD) 
- Encourages the student's output 

probabilities/representations to align closely with those of 
the teacher

- Uses Teacher model predictions or intermediate 
representations (e.g., logits)

ℒ𝐾𝐷 = 𝑪𝑬 𝒑𝓣 𝑥, 𝑇 = 𝑡 : 𝒑𝑺 𝑥, 𝑇 = 𝑡

𝑝𝒯: soft prediction of the teacher
𝑝𝑆 ∶ soft prediction of the student

ℒ𝑠𝑡𝑢 = 𝑪𝑬 𝒚: 𝒑𝑺 𝑥, 𝑇 = 1)

𝑦: "hard" targets from ground-truth
𝑝𝑆: hard prediction of the student

Logits: 𝑧𝑖  
Given an input data 𝑥, trained neural networks 
produce peaky probability which are less informative. 
So a Temperature scaling is used 

𝑝 =
𝑒𝑧𝑖/𝑇 𝑥

σ𝑗 𝑒𝑧𝑗/𝑇 𝑥
𝑇 ≡ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

ℒ = 𝛼 ℒ𝑠𝑡𝑢 + (1 − 𝛼)ℒ𝐾𝐷
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Information distances

Information distance measures the dissimilarity between two sources of information

- Cross Entropy: 𝐶𝐸 𝒒: 𝒑 = − σ𝑖=1
𝑁 𝑞𝑖 log 𝑝𝑖

- Kullback-Leibler Divergence:                     𝐾𝐿 𝒒: 𝒑 = σ𝑖
𝑁 𝑞𝑖 log

𝑞𝑖

𝑝𝑖

- Jensen-Shannon Divergence:                    𝐽𝑆 𝒒, 𝒑 =
1

2
𝐾𝐿 𝒒:

𝒒+𝒑

2
+ 𝐾𝐿 𝒑:

𝒒+𝒑

2

- Structural Entropic Distance:                   𝑆𝐸𝐷 𝒒, 𝒑 =
𝐶

𝒒+𝒑

2

𝐶 𝒑 𝐶 𝒒
               𝐶 𝒑 = 𝑏− σ𝑖=1

𝑁 𝑝𝑖 log𝑏 𝑝𝑖

- Triangular Divergence: 𝑇𝐷 𝒒, 𝒑 = 1 − σ𝑖=1
𝑁 2𝑞𝑖𝑝𝑖

𝑞𝑖+𝑝𝑖

Note that CE, KL, JS, TD shows very tight correlations! [1]

[1]  Connor, R., Dearle, A., Claydon, B., Vadicamo, L.: Correlations of cross-entropy loss in machine learning. Entropy 26(6) (2024)

A wide range of information distance functions remains 

underexplored in distributed learning literature
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Do these different information 
distance  exhibit similar behavior in 
distributed learning contexts?
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• Clients exchange information 
to enhance their learning

• Each client acts as both 
learner (student) and source 
of knowledge (teacher) for 
others

• Decentralized system: No 
central model or teacher

• Clients train on local datasets 
and share knowledge with 
peers

KD-based Distributed Learning Framework
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• Network with K clients 

• Each client 𝑪𝒌 holds a local dataset 𝑫𝒌 and a multi-

head neural network 𝓜𝒌 , composed of :
▪ Backbone: Extracts feature representations from input 

data

▪ Head 1: Model 𝓜𝒉𝟏
𝒌 (Backbone + Head 1) trained on 

local distribution 𝑫𝒌 

▪ Head 2: Model 𝓜𝒉𝟐
𝒌 (Backbone + Head 2) trained on 𝑫𝒌

using knowledge distillation from connected clients

• Clients are trained concurrently, allowing them to share 
knowledge through distillation to improve overall 
model performance

Fully Decentralized Learning Model
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Experimental Setup

• Decentralized network with 3 interconnected clients

• Comparing different information dissimilarity measures (CE, KL, SED, TD, JS) 

• Different levels of data heterogeneity [2]

▪ Each client 𝐶𝑘 receives a subset of labels {ℓ𝑖}, referred to as primary labels for 𝐶𝑘

▪ Labels outside {ℓ𝑖} are considered secondary labels for Client 𝐶𝑘

▪ Data samples are distributed randomly among clients. The probability of assigning a sample with label ℓ 
to a client 𝐶𝑘 is chosen to be (1 + 𝛾) higher for clients that have ℓ as their primary label

𝜸 controls dataset skewness:
-  𝛾 = 0 : data distribution is uniform across all clients (iid)

- Higher 𝛾: Non-iid distribution (more primary label focus)

• In experiments:
• 𝛾 = 15  for CIFAR-10

• 𝛾 = 10  for SUN397 3
9

7

[2] Zhmoginov, Andrey, Mark Sandler, Nolan Miller, Gus Kristiansen, and Max Vladymyrov. "Decentralized Learning with Multi-Headed Distillation." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, pp. 8053-8063. 2023.

temperature T: 1, 10 and 100
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Results: CIFAR-10 iid

(SUM) (AVG)

• KD does not significantly enhance overall accuracy when the input data is sufficient and balanced
• all tested dissimilarity measures exhibited performance similar to CE

• AVG approach achieve same performance while reducing computational complexity 
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Results: CIFAR-10 non-iid

(SUM) (AVG)

• KD led to an increase in the average accuracy of the clients’ models compared to the fully supervised approach
• AVG case : For 𝛼 > 0 minimal diff. between SED and JS; for 𝛼=0.2 CE and KL perform worse; for 𝛼=0.8 all measures perform 

similarly, with KL having higher variance across clients  
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Results: SUN397 non-iid

(SUM) (AVG)

• This confirms the argument that when the client’s training data is scarce (leading to model overfitting) communication between 
clients can enhance generalization and improve client’s performance

• CE and KL are outperformed by SED, TD, and JS distances in many of the tested configurations 
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Conclusions

• We evaluated different information dissimilarity measures in a distributed KD setting across 
various data distributions

• Key findings: 
▪ The KD-loss based on the dissimilarity between the current client’s soft-predictions and the average of 

soft-predictions from remote clients showed the best trade-off between accuracy and efficiency

▪ In the iid case, all measures have similar accuracy, so Triangular Dist. is preferred as it is more efficient

▪ The distance measures impact model training on non-iid data 

▪ The commonly used cross-entropy and Kullback-Leibler divergences are not always the most effective

• Future work:
▪ Investigate gradient stability (exploding/vanishing gradients)

▪ Evaluate performance with more nodes and diverse network topologies
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