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Abstract—Knowledge distillation (KD) is a key technique for
transferring knowledge from a large, complex “teacher” model
to a smaller, more efficient “student” model. KD is extensively
used to facilitate knowledge transfer between Edge devices
in distributed infrastructures. While Cross Entropy (CE) and
Kullback-Leibler (KL) are commonly used in KD, this work
investigates the applicability of loss functions based on underex-
plored information dissimilarity measures, such as Triangular Di-
vergence (TD), Structural Entropic Distance (SED), and Jensen-
Shannon Divergence (JS), for both independent and identically
distributed (iid) and non-iid data distributions. The primary
contributions of this study include an empirical evaluation of
these dissimilarity measures within a decentralized learning
context, i.e., where independent clients collaborate without a
central server coordinating the learning process.

I. INTRODUCTION

The integration of Artificial Intelligence in edge processing
has led to the emergence of an interdisciplinary field known
as Distributed Intelligence or Edge Intelligence, which aims to
develop systems composed of software agents, robots, sensors,
and computer systems that can collaborate effectively [1], [2],
[3]. In this field, Knowledge distillation (KD) has been em-
ployed to facilitate knowledge transfer between edge devices,
enhancing the development of more efficient and accurate
models [4]. KD is a machine learning technique designed to
transfer knowledge from a large, complex model (the teacher)
to a smaller, more efficient one (the student) [5], [6], [7].
In addition to its primary role in model compression, it has
started to find applications in other areas, including distributed
intelligence [8] and continual learning [9].

In the KD-based distributed learning framework, clients
exchange information to enhance their learning process, where
each client operates as a learner and a source of knowledge for
other clients. These clients are part of a decentralized system
where no single model acts as the central teacher. Instead, each
client trains on its local dataset and shares knowledge with
others. As illustrated in Fig. 1, this information exchange is
achieved through combining two types of losses. The first loss
component, indicated as “fully-supervised loss”, is usually the
cross-entropy (CE) with “hard” targets derived by the ground-
truth labels of the input samples. The second component is
the “distillation loss” designed to ensure that each learning
client mimics the output of other remote clients [10]. This
loss is typically implemented by comparing the probability
distributions of the models involved, where one model acts
as the student and others take turns serving as teachers.
This encourages the student’s output probabilities to closely
match those of the teacher. The model’s output probabilities
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Fig. 1: KD-based decentralized network consisting of K
clients, where distillation is performed using soft predictions
for effective knowledge transfer.

are typically computed using a softmax layer. Adjusting the
softmax temperature during training has proven to be crucial
in metric learning and distillation processes. In the context
of distributed intelligence, this technique is also employed to
generate soft predictions for effective distillation. Hence, the
distillation loss is expressed as minimizing the gap between
the soft predictions of one client with respect to the soft
predictions of all other clients [11], [12], [13].

Given that the softmax function transforms an array of
logits into an array of positive values summing to 1, various
information dissimilarity measures can theoretically be used to
implement the distillation loss. However, in practice, it is pre-
dominantly realized using CE, in addition to Kullback-Leibler
(KL) Divergence, and Mean Squared Error (MSE) [14]. These
methods have been extensively studied and proven effective
for knowledge transfer in diverse machine learning tasks,
while a wide range of information distance functions remain
unexplored in the literature related to distributed learning.

In this work, we break new ground by investigating
alternative dissimilarity measures – specifically, Triangular
Divergence (TD), Structural Entropic Distance (SED), and
Jensen-Shannon (JS) divergence – in the context of KD for
decentralized learning scenarios. Recently, the correlations
among these measures and the commonly used CE have been
examined in [15] for independent and identically distributed
(iid) data. Our work aims to expand the understanding of
how these dissimilarity measures can enhance KD techniques,
particularly in settings where data distribution may vary across
learning clients (with a non-iid data distribution).

Our main contributions include designing a distributed
KD environment suitable for investigating the aforementioned
information dissimilarity measures and examining the per-



formance of a set of clients by comparing pairwise distil-
lation averaging among clients to the conventional peer-to-
peer pairwise distillation, considering the various information
dissimilarity measures.

II. EXPERIMENTAL SETUP

Our analysis was conducted on a decentralized network
consisting of three interconnected clients. We studied the
effectiveness of different information dissimilarity measures
(namely, CE, KL, SED, TD, JS) on distributed learning
systems with different levels of data heterogeneity, ranging
from scenarios where the data distribution is uniform across
all clients (iid) to more extreme situations where each client
focuses on its own specific tasks (non-iid). For this purpose,
we used the CIFAR-10 [16] dataset and the SUN397 [17]
dataset. We split the datasets into three subsets, one for each
client. For the CIFAR-10, the iid distribution is obtained by
shuffling and evenly splitting the entire dataset, ensuring each
client has different samples. For the non-iid distribution across
the clients, we followed the configuration in [4]. Each client
Ck receives a subset {ℓi} of the labels, which are designated
as primary labels for Ck. Labels not included in {ℓi} are
considered secondary for Ck. Samples for each label ℓ are
distributed randomly among clients, with a higher probability
(1 + γ times greater) of being assigned to clients that have
ℓ as a primary label. The parameter γ, referred to as dataset
skewness, determines this distribution. In the experiments, we
used γ = 15 for CIFAR-10 and γ = 10 for SUN397.

For defining the distillation loss Lk,KD we considered two
alternatives:

• Case 1: The sum of pairwise dissimilarities between the
current client’s soft-prediction and remote client’s soft-
predictions.

• Case 2: A distillation loss based on the dissimilarity be-
tween the current client’s soft-predictions and the average
of soft-predictions from remote clients.

Performance evaluation was conducted using 10% of the
entire data distribution for both iid and non-idd datasets. For
each client, we computed the accuracy of the model. All
models are based on ResNet18 [18] and are initialized with
weights pre-trained on ImageNet, as provided by PyTorch.
We also employ standard data augmentation techniques as
recommended in the PyTorch documentation for ResNet18.

III. RESULTS

Fig. 2a and Fig. 2b present the average accuracy on CIFAR-
10, while varying the hyperparameter α, which control the
amount of distillation loss (α = 0 uses only distillation
loss, α = 1 uses only local loss). Our results indicate that
KD does not significantly enhance overall accuracy when
the input data is sufficient and balanced. Furthermore, all
tested dissimilarity measures exhibited performance similar to
CE. This observation is consistent across both cases when
computing the distillation loss. Based on this observation,
in iid settings, the choice of a dissimilarity measure may
depend on implementation requirements, with a preference for

(a) iid data, sum (b) iid data, average

(c) non-iid data, sum (d) non-iid data, average

Fig. 2: CIFAR-10: Mean accuracy over three clients consider-
ing the sum of the distillation losses in the left-hand plots, and
the average of remote predictions to compute the distillation
loss in the right-hand plots.

computationally efficient measures such as TD. Fig. 2b shows
that distillation with the average predictions of remote clients
CΦ results in similar accuracy to the sum of pairwise losses.
This approach allows the computation of a single loss instead
of multiple pairwise losses, potentially reducing computational
complexity.

In the case of non-iid distribution (Fig. 2c and Fig. 2d),
the distillation process led to an increase in the average accu-
racy of the clients’ models compared to the fully-supervised
approach. This improvement is particularly noticeable for the
value α = 0.5. For this value, all measures show minimal
variance among the three clients (as indicated by the vertical
bars) except in 2c, where the KL provides a high variance
compared to others. For α > 0 values, minimal differences are
observed between JS and SED when computing the distillation
loss with the average of predictions generated by the remote
clients, whereas CE and KL perform worse in case α = 0.2.
Furthermore, the average of the predictions obtained from
remote clients, in Fig. 2d shows that for α = 0.2, SED and JS
already exhibit good performance. However, for α = 0.8, all
measures perform similarly, with KL having higher variance
across clients. On the other hand, SED appears to be superior
to other measures from α = 0.2, providing minimal variance
when considering the sum of distillation losses.

We also performed experiments in the non-iid scenario using
the SUN397 dataset. In these experiments, adding more layers
to the second head caused the model to overfit, showcasing
an average accuracy of 48.33% compared to the first head,
showcasing an average accuracy of 57.74% over all the
clients. This confirms the argument made in [4] that when the



client’s training data is scarce, leading to model overfitting,
communication between clients can enhance generalization
and improve client’s performance on their private tasks.

Regarding the performance of the different dissimilarity
measures, CE and KL are outperformed by SED, TD, and
JS distances for α = 0 and α = 0.8 when using the sum
of distillation losses from each remote client. However, when
using the average of remote predictions, the CE and KL
perform worse for the values of α = 0 and α = 0.2. In other
cases, all measures perform equally well.
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