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Abstract—Existing research recognises the critical role played
by machine leaning in various business applications to improve
decision making. While there has been an increase in the
application of machine learning to various business domains,
most businesses lack the experience, knowledge, or infrastructure
to develop, deploy, monitor and retrain the machine learning
systems. This paper proposes a micro-services based architecture
that delivers machine learning solutions as a service. Unlike
existing solutions that focus only on deployment, our solution
offers end-to-end integration including model drift monitoring
and automatic retraining.

Index Terms—Machine Learning, Models, Micro-services

I. INTRODUCTION

Technological advancements in computing have led to an
increase in the amount of data generated today. This is partly
from the wide spread of sensor networks and connected
mobile devices [1]. As a results, this has given companies
and organisations the power to harness such data through
complex algorithms and machine learning to improve decision
making. Machine learning (ML) allows a computer system to
learning from data without explicit instructions and make new
discoveries [2]. Today, ML has been widely adapted in many
business and research domains due its ability to learn from
data and provide invaluable insights.

While large companies continue to develop and deploy their
on ML tools, smaller and medium sized ones struggle in
comparison [3], [4]. This is due to the lack of the infrastructure
and technical expertise to develop, deploy and maintain such
solutions. As a result, Machine Leaning as a Service (MLaaS),
a new paradigm that allows users to utilize ML without the
need to focus on the infrastructure has been on the raise [3].
This way, the user can focus on the application logic.

Most of the solutions focus on the 3 stages of the ML cycle
used in [3]. These include data acquisition and understanding,
modeling/training and finally deployment. While this strategy
works in the initial stages, ML models have been show to drift
as they are introduced to new data [5], requiring retraining.
In this paper, we proposed a MLaaS solution that is based
on microservice architecture that extends current solutions to
include model monitoring for drift and retraining through a
feedback mechanism.

II. SYSTEM DESIGN

This section describes the proposed architecture . It is based
on FASTAPI open source python library. As shown in the
figure 1 the design of the architecture is broken down into
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Fig. 1. The overall data and system flow.

two main stages: the API for the initialization phase, this
includes model registration and discovery, and the API for
the deployment phase, this includes endpoints for deployment,
inference and drift monitoring. The following section describe
processes in each stage.

A. Model description

The process start with model registration. We use a declar-
ative description to define the parameters of each model.
Each ML model is defined by a set of properties. These
include model type, its internal hyperparameters, the min-
imum resources required to train and run that model, and
its explainability characteristics. A user, or agent queries the
model repository with such parameters whenever they need to
identify matching models for a task. Figure 2 show some of
the properties of the models.

B. Invocation

The invocation stage is broken down into a series of REST
API calls:



modelname String
Name of the ML model eg 'RandomForest'

modelkind String
The type of mode eg 'Classification'

traincode String
Link to github with training source code

trainingdata String
Location of training data eg 'S3 bucket'

hyperparameters Array
Hyperparameters and corresponding values

modelperform Array
List of metric used to evaluate the model

trainingresource Array
Specification of resource require to retrain the model

runresource Array
Specification of resource require to run the model

featurelist Array
List of model feature and their type

inference Array
How to pass inference data

Fig. 2. Parameters used to define a model

1) Request. Here, the user/agent specifies the type of the
ML model it needs using the ML model description
defined above.

2) Model description. Once a matching model is found, the
API returns a list of all the ML models that match the
agent’s requirements.

3) Deployment REQUEST. At this stage, the agent picks
one model and sends back a request to API to deploy
the selected ML model.

4) Deployment instructions. The API pushes the request
to the queue for deployment and returns a deployment
ID to the agent to be used in the next stage. This is a
continuation of step 3 above.

C. Deployment
The second stage of the cycle is the deployment phase. After

the user acknowledges the deployment of an ML model, the
request is pushed to a redis queue. Based on the resource re-
quirements of the ML model to be deployed, a worker node(s)
will be initialized using kubernetes. The systems supports two
modes of model deployment; 1) open deployment, that is, the
model can be deployed on any node, 2) strict deployment,
the model has to be deployed on a specific node. The second
options supports privacy preserving applications.

D. Inference
All ML models are package and deployed as docker contain-

ers. This ensure faster setup and tire down, but also guarantees
they can easily be deployed in any environment that has a
docker engine. Each of the deployment exposes an endpoint
that is used for inference. The system supports two modes
of inference; 1) The user can pass the data directly to the
endpoint, or pass a reference to the data. The data can be in
an AWS S3 bucket for example.

E. Monitoring and retraining

For every inference made, the application send feedback
which is used to monitor model performance for drift. This
feedback mechanism is only currently possible in the open
deployment mode.

F. Decommission

Once a user no longer needs the ML model, they send a de-
commission command, and the application will be destroyed.
It important to note that this is a 2 step process, first, the ML
application is cached, and if no other users/agents requires the
same model, it is then completely destroyed.

III. RELATED WORK

The increasing amount of data generated and used has led
to wide spread integration of ML solutions to extract value.
Many organizations, however, lack the technical expertise and
the necessary infrastructure. Due to this, several solutions have
been proposed that offer MLaaS. This section highlight some
of those works.

Ribeiro et. al. [4] proposed an open source flexible, and non-
blocking architecture that delivers MLaaS based on service
component architecture and focusing on predictive modeling.
The proposed solution was evaluated in a case study based
on forecasting electricity. Zhao et. al. [6] presented a platform
based on micro-services that lets business integrate ML func-
tionality into other business applications. In a similar way, Rao
et. al. [7] proposed a containerized solution, which gives users
the ability to develop, improve and deploy ML models with
ease. The solution also features a GUI.

Several other solutions have been proposed [8]–[10], how-
ever, the focus of most of them is model training, storage
and deployment. They neglect model drift monitoring and
automatic retraining. One might argue that such functions
are present in commercial tool like; SageMaker by Amazon,
Google AI, or even Azure machine by Microsoft. However, it
is important to note that the implementation details of these
products are not publicly available.

IV. DISCUSSION, CONCLUSION AND OPEN CHALLENGES

In this paper we introduce a micro-service based archi-
tecture that decouples ML solutions from application logic.
This is aimed to extend current solutions which focus on only
data acquisition, model training and deployment and neglect
drift monitoring and retraining as necessary steps for MLaaS
solution. By incorporating these step, our proposed solution
offer an end-to-end ML solution.

While the proposed and existing solution offer means for
smaller and medium sized companies to leverage ML solutions
without worrying about infrastructure and technical chal-
lenges, other open challenges still exist. The main challenge is
privacy. Since most ML solutions need access to data to train
and retrain, and there is a increase on reliance on personal data
to develop custom models, it is challenging to develop MLaaS
solution because regulatory bodies do not allow organization
to share such data.
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