Scalable and Lightweight Cloud-Native
Application Sandboxing

Abstract—In the evolving landscape of edge-cloud sys-
tems, the need for efficient and secure application de-
ployment is critical. This work introduces a scalable and
lightweight approach to cloud-native application sandbox-
ing using urunc, a container runtime for unikernels, and
bima, a tool for packaging unikernels into OCI-compatible
artifacts. By leveraging both software- and hardware-
based sandboxing, our solution enhances the security and
efficiency of edge-cloud applications while maintaining
compatibility with existing cloud-native ecosystems. Our
contributions also extend to open-source projects like kata-
containers, enabling AWS Firecracker microVM sandbox-
ing, and integrating vAccel, to expose hardware accelera-
tion functionality to sandboxed workloads.

Index Terms—lightweight virtualization, isolation, secu-
rity, 6G, NFV, hardware acceleration, vAccel

I. MOTIVATION

Containers are lightweight, self-contained execution
environments that encapsulate applications and their
dependencies, providing a consistent and reproducible
runtime environment. Achieving this versatility is made
possible through a combination of operating system-level
virtualization and resource isolation techniques. Unlike
virtual machines, containers do not require a guest OS
in each instance, resulting in smaller, faster, and highly
portable units that can be executed everywhere. These
are mainly the reasons all actors in the context of
networking are shifting to the use of containers. In
MLSysOps!, we employ a pure cloud-native approach,
across the continuum, compute and network. Figure 1(a)
shows a high-level logical overview of the system com-
ponents involved when two containers are running on a
host system.

Limitations of containers: Despite their numerous ad-
vantages, containers have certain limitations, particularly
in terms of security and isolation. Although containers
provide a level of isolation by leveraging operating
system features, they still share the underlying operating
system kernel. This shared kernel introduces potential
security risks, as a compromise within the kernel could
impact the security and integrity of all containers running
on the same host. Additionally, containers may not

'https://mlsysops.eu

container B container B

container 4

container 4

(vwm

)
(oo)

Guest Kernel A]

L
(

[Guest Kernel B]

[Host Linux Kernel

(Hardware Platform]

Host Linux Kernel]

Hardware Platform J

(a) Generic Containers (b) Sandboxed Containers

ocl
cm]ipec

Kata shim v2

Virtual Machine

10
Container Container
command exec

Namespaces

Kata-agent
Guest Kernel A

9RPC————3> Hypervisor VSOCK socket Hypervisor

(c) Interaction with high-level container runtimes

gRPC

Fig. 1. Process Isolation in generic and sandboxed containers

provide sufficient isolation for certain sensitive work-
loads or applications with strict security requirements.
Furthermore, containers may face challenges when han-
dling specific types of workloads, such as those with
strict real-time requirements or resource-intensive appli-
cations that demand fine-grained control over hardware
resources.

Sandboxing containers: To address the limitations
of containers in terms of security, isolation [1] and
resource control, container sandboxing comes into play.
By encapsulating containers within microVMs, each
with its dedicated kernel instance, stronger isolation and
security are achieved. The use of microVMs ensures
that any compromise within a specific microVM remains
contained, mitigating potential security risks from the
shared underlying kernel. With container sandboxing,
containers can overcome their limitations in terms of
security, isolation, and handling diverse workloads, mak-
ing them more robust and suitable for a wide range of

applications across various domains. Figure 1(b) presents
the high-level concept of container sandboxing using
kata-containers.

Sandboxing in Edge Devices: Edge devices pose
significant challenges in terms of limited computing
resources and their heterogeneous nature. This requires
developing specialized software that can seamlessly run
across diverse edge devices, accommodating their unique
characteristics. Developers must account for compatibil-
ity issues, adaptability, and the need for device-specific
optimizations. Employing cloud-native techniques miti-
gate these issues. However, multi-tenancy adds another
layer of complexity. When multiple deployments share
the same edge devices, isolation becomes crucial to
ensure the security and integrity of each application and
its data. Therefore, sandboxing techniques, such as mi-
croVMs, can be employed to provide isolated execution
environments for individual deployments, mitigating the
risk of interference or unauthorized access.

II. ENHANCING SANDBOX MECHANISMS

Adding a full virtualization stack (hypervisor, guest
kernel, rootfs) to a simple network function incurs over-
head [2] associated with the instantiation time, as well as
the memory and CPU footprint of the actual workload on
the compute resources. To alleviate this overhead, while
enhancing isolation we choose to use unikernels [3].
Specifically, we introduce urunc?, our own custom con-
tainer runtime that is able to spawn unikernels. Coupled
with the integration of vAccel® with kata-containers and
urunc, we unify the deployment and execution paradigm
of any network service function / application function
across the whole MLSysOps continuum: Cloud-based
and Edge-based. Users provide an application descrip-
tion, based on containerized workloads (OCI artifacts)
and in each part of the continuum, based on underlying
resources and hardware capabilities, the respective ex-
ecution mode is selected and the workload is spawned
either as a generic container, a sandboxed container or
a unikernel. Taking advantage of vAccel (as an API-
remoting hardware-acceleration framework) workloads
enjoy the benefits of hardware-accelerated functions (eg.
ML inference) on any part of the continuum, regardless
of the underlying hardware-specific implementation.

We demonstrate the various execution modes using a
simple serverless httpreply function*. Moreover, we
demonstrate the hardware-acceleration abstraction using
a simple ML model, running on two modes, CPU and
GPU, using the same binary application (OCI artifact).

2https://github.com/nubificus/urunc
3https://docs.vaccel.org
“https://github.com/nubificus/httpreply-go

bina build

Unikraft----- >.’,)--..> © cosign

build unikernel binary build unikernel

manifest
-GO---—-> ... > © 5 |\
build application binary buid container sign container sign manifest
- [,} Container
Unikraft-----> oo @ cosien &> |7 Registry
buid unikernel b sign container)
i unkemetbinary build container —J
GO I build application
------ > ee--> ©cosign manifest
build application binary puild container sign container | [Yord!
O Ssign
sign manifest

build container

x86_64

aarch64

docker build

Fig. 2. Build OCI artifacts for deployment

Finally, we demonstrate the building process for the OCI
artifacts we use (Figure 2), focusing on the interoperable
OCI manifest creation (multiple architectures, multiple
modes of execution).

III. CONCLUSIONS

This framework provides secure, efficient, and scal-
able deployment of applications in modern cloud envi-
ronments, exemplifying the MLSysOps project’s com-
mitment to leveraging cutting-edge technologies for en-
hanced security and performance in cloud-native work-
loads (Figure 2).

REFERENCES

[1] MITRE, “CVE-list related to containers..” CVE list of vulnera-
bilities related to the term ’containers’: https://cve.mitre.org/cgi-
bin/cvekey.cgi?keyword=containers, June 30 2024.

[2] V. van Rijn and J. S. Rellermeyer, “A fresh look at the archi-
tecture and performance of contemporary isolation platforms,” in
Proceedings of the 22nd International Middleware Conference,
Middleware *21, (New York, NY, USA), p. 323-335, Association
for Computing Machinery, 2021.

[3] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh,
T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels:
library operating systems for the cloud,” SIGARCH Comput.
Archit. News, vol. 41, p. 461-472, mar 2013.

