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Abstract—Traditional object storage services generally con-
strain data storage to a single geographic region, limiting flexibil-
ity, scalability, and resilience. Our proposed object storage system
introduces a novel, adaptive approach that uses random linear
network coding to dynamically distribute data fragments across
multiple regions. Key features include a gateway architecture
that manages encryption, erasure coding, and regional transfers,
along with machine learning models that optimize fragment
placement and redundancy levels in response to demand and
user-defined performance metrics such as latency and bandwidth.
This approach aims to deliver high availability and performance
while minimizing storage costs.
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I. INTRODUCTION

Object storage is a foundational element in cloud comput-
ing, enabling scalable storage and retrieval of unstructured
data. However, conventional object storage systems are re-
gionally restricted, with data often confined to a single user-
designated region. This geographic rigidity not only affects
performance and availability but also prevents dynamic adap-
tation to user access patterns. Furthermore, most systems use
a fixed redundancy level for data, which can be inefficient and
costly as demand fluctuates.

Our object storage system addresses these limitations
through an adaptive multi-region design that utilizes erasure
coding and machine learning. The gateway-based architecture
provides a seamless user experience, handling encryption,
coding, and data routing while allowing access via a single
service URL. By dynamically managing fragment distribution
and redundancy across regions, our system achieves high avail-
ability and responsiveness with cost-efficient storage, tailored
to each bucket’s performance needs.

II. RELATED WORK

Erasure coding has emerged as a key technique in modern
object storage, providing durability and fault tolerance with
reduced storage overhead compared to traditional replication
strategies. By splitting data into coded fragments that al-
low reconstruction even if some fragments are lost, erasure
coding enables more efficient use of storage in distributed
systems [1]. Recent studies demonstrate its scalability and
cost-effectiveness, particularly in multi-region setups, where
data availability is paramount [2].

Dynamic data placement using machine learning has also
proven effective for improving performance in distributed
storage. Zhang et al. used deep reinforcement learning to
optimize data placement, reducing latency by adapting to

Fig. 1. Illustration of dynamically changing redundancy and fragment
placement based on real traffic

network conditions and access demand [3]. Similarly, Zhou
et al. reviewed various machine learning models for service
placement, highlighting their ability to improve resource allo-
cation and operational cost in distributed systems [4]. Machine
learning techniques have also been applied to optimize re-
source allocation in distributed machine learning clusters, with
Li and Hu focusing on minimizing latency and interference in
job placements [5]. Inspired by these approaches, our system
integrates machine learning to dynamically adjust fragment
placement and redundancy levels, balancing cost with perfor-
mance in a flexible, multi-region object storage framework.

III. PROPOSED SYSTEM DESIGN

The core of our proposed system design lies in its dynamic
and intelligent fragment management. Each object uploaded
to a bucket is encoded into multiple fragments using ran-
dom linear network coding. Instead of a fixed redundancy
and placement strategy, our system adapts both parameters
based on current access demands and optionally, user-given
performance requirements for each bucket. In the following,
we briefly describe key components of this system.

A. Gateway Architecture

Our system uses a gateway architecture where clients con-
nect to perform API requests (e.g., bucket creation, object
upload/download). Each gateway instance handles encryption
and erasure coding of objects and routes the coded frag-
ments to the storage regions assigned to the bucket. During
downloads, the gateway retrieves the necessary fragments,
reconstructs and decrypts the object, and returns it to the
client. Gateways are deployed at several locations in Europe
and North America, close to major user clusters, and clients are
automatically routed to the nearest gateway instance through
anycast DNS. The Gateways will also include a local read-
through cache to avoid pulling data from the external storage
locations. The common challenge of cache invalidation is pre-
vented by the immutable nature of object storage. This design
ensures reduced latency and a unified interface, providing
seamless access to the service from any location.



B. Dynamic Fragment Placement

Unlike traditional object storage solutions where data re-
sides in a single region, our system allows fragments to
be dynamically relocated across regions. This is particularly
useful in scenarios where traffic originates from varying lo-
cations over time. By analyzing real-time traffic patterns, the
system adjusts the placement of fragments to regions closer
to the sources of demand, optimizing download latency for
end-users. Machine learning models are employed to predict
shifts in access patterns and relocate fragments to regions
with higher demand, either preemptively or soon after an
unforeseen traffic spike.

C. Adaptive Redundancy Management

The number of redundant fragments stored across regions
is also dynamically adjusted. When a bucket experiences low
access demand, the system reduces redundancy to save on stor-
age costs, retaining only the minimum number of fragments
required for data durability. Conversely, when access demand
is high or coming from multiple distant origins, additional
redundant fragments are created to maintain availability even
if some regions experience temporary outages, as illustrated
on Figure 1. This adaptive redundancy approach is key to
balancing cost efficiency with availability.

D. Performance-Driven Optimization

Users can specify latency and download speed requirements
for each bucket. Our system continually assesses these metrics,
using machine learning models to determine optimal config-
urations of fragment numbers and placement regions to meet
these requirements. For example, if a bucket needs to achieve
low latency for users in a specific geographic area, fragments
are moved closer to that region to enhance responsiveness.
Similarly, if high bandwidth is required, additional fragments
may be allocated to regions with higher network throughput.

IV. MACHINE LEARNING MODELS FOR OPTIMIZATION

Our system leverages several machine learning models to
optimize fragment placement, redundancy levels, and storage
configurations based on access patterns, latency, and band-
width considerations

• Demand Prediction Model: This model analyzes his-
torical access data and user behavior to forecast future
traffic patterns. By predicting likely demand sources, it
allows the system to move fragments closer to expected
high-demand regions, reducing latency and meeting per-
formance expectations.

• Redundancy Optimization Model: This model decides
the appropriate level of redundancy based on access
frequency and predicted demand. For buckets with low
activity, it reduces the redundancy factor to lower storage
costs, while for high-demand buckets, it increases redun-
dancy to enhance availability.

• Performance Prediction and Fragment Placement
Model: This model predicts the optimal storage regions
for fragments based on latency and bandwidth estimates.

We regularly measure download speeds and latency be-
tween every gateway and each storage region using
synthetic traffic of varying sizes (from 1 byte to 50
MB). These periodic measurements, taken at randomized
times, capture daily fluctuations in network performance,
providing insights into regional variability in latency
and bandwidth. For example, regions served by smaller
providers may exhibit reduced bandwidth during business
hours, while regions supported by larger providers may
experience peak usage in the evenings. With this data, the
model can predict access speeds for any fragment size
across regions and adjust placement to ensure that user-
specified latency and bandwidth requirements are met.

• Cost Minimization Model: This model identifies storage
configurations that minimize costs without compromising
performance. It accounts for storage, data transfer costs,
and the number of fragments necessary to meet reliability
standards, suggesting configurations that balance opera-
tional costs with service quality.

These models work together to dynamically adapt frag-
ment distribution and redundancy based on evolving access
demands, providing a cost-effective, high-performance storage
solution that meets diverse user requirements.

V. CONCLUSIONS AND FUTURE WORK

Our proposed system design introduces a flexible, multi-
region object storage solution that adjusts both fragment
placement and redundancy in response to user demand and
specified performance metrics. By leveraging erasure coding
and machine learning, our design provides improved avail-
ability and performance while minimizing storage costs. Initial
simulations indicate promising results in achieving low latency
and high availability with optimized redundancy configura-
tions.

Future work will focus on refining the predictive capabilities
of the machine learning models, potentially incorporating
real-time network conditions to further optimize fragment
placement. Additionally, we plan to explore other coding
techniques that could enhance the system’s fault tolerance and
performance in edge scenarios, where bandwidth and latency
requirements are more stringent. Through these advancements,
we aim to make our dynamic object storage system adaptable
for a wide range of applications, from enterprise cloud storage
to IoT data management.
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