
Scheduling Inference Workloads on Distributed Edge Clusters with
Reinforcement Learning

Abstract—Edge networks are crucial for real-time applications,
as they provide close proximity to data sources for processing
inference tasks. However, the constrained nature of edge networks
presents challenges in managing inference workloads. This paper
focuses on scheduling inference queries on DNN models in
edge networks at short timescales, highlighting the need for a
dynamic scheduling policy. ASET, a reinforcement learning-based
scheduling algorithm, provides the best performance compared
to static policies.

I. INTRODUCTION

The popularity of Deep Neural Networks (DNNs) has
increased in recent years, particularly in applications like
Augmented/Virtual Reality (AR/VR), cognitive assistance, and
video surveillance. DNN model training is typically done
offline in centralized data-centers or distributed via feder-
ated learning [1]. However, DNN inference tasks are typi-
cally performed online with constraints in terms of accuracy,
throughput, and latency, which may differ across applications.
Providing an inference service [2]–[8] requires addressing
several challenges, such as selecting the appropriate model
variant, processing unit, and nodes and resources. This requires
management at different timescales, with schedulers selecting
computing instances for new requests and orchestrators op-
timizing model placement across nodes. Edge computing is
crucial for DNN-based applications with stringent delay or
bandwidth requirements, but realizing DNN inference at the
edge poses additional challenges due to complex networks
and limited resources. Recent work [9], [10] combines edge
computing and deep learning, but none analyzes inference
workload optimization considering different application con-
straints in realistic edge network settings.

This paper discusses the scheduling of DNN inference
requests, considering accuracy, throughput, and latency con-
straints in realistic edge deployment settings. It presents sev-
eral static scheduling policies and proposes ASET, an adaptive
scheduling algorithm based on Reinforcement Learning. ASET
improves performance when resources are distributed across
the edge network, increasing the percentage of successfully
handled queries. The study demonstrates that different appli-
cations may benefit differently from each scheduling strategy.

II. RELATED WORK

Recent studies [2], [3], [5]–[8] have investigated the provi-
sioning of on-demand inference services, focusing on cloud in-
ference workload, edge inference workload, and tasks schedul-
ing. Most existing solutions address the common scenario of
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Fig. 1: The scheduler dispatches streams of queries on available model variants
based on their constraints and geographical position of clusters.

scheduling queries over data center resources, but they only
consider network latency and resource constrained clusters.
Edge inference workload combines deep neural networks
with edge computing to overcome scalability and latency
limitations. Some authors propose an approach to schedule
tasks across multiple edge servers, minimizing end-to-end
latency. However, this approach is not suitable for interac-
tive or critical scenarios like virtual reality and autonomous
driving. Tasks scheduling [11]–[21] has emerged due to the
increasing number of real-time applications requiring pow-
erful resources and fast processing time. Many works pro-
pose scheduling mechanisms for orchestrating computational
resources, prioritizing tasks, and managing dependencies to
meet the performance requirements of edge environments.
Deep Reinforcement Learning has emerged as a powerful
approach for real-time decision-making, allowing adaptive and
efficient optimization even for online task scheduling and
resource allocation. Recent solutions, such as TapFinger, train
a multi-agent reinforcement learning algorithm in combination
with heterogeneous attention network graphs to support each
agent’s optimal decision.

III. ASET SCHEDULING ALGORITHM

The adaptive scheduling approach aims to learn the optimal
policy based on current system conditions, such as appli-
cations, network topology, and stream arrivals as shown in
Figure 1. This is formulated as a Reinforcement Learning
problem, where an intelligent agent tries to learn the optimal
policy selection strategy according to the observed state of
the environment. An RL policy estimates a probability dis-
tribution of each possible action that cumulatively maximizes
a reward, typically maximizing the fraction of queries served
successfully.
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(a) Queries handled successfully.
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(b) Different clients rate on full-edge.
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(c) Queries delivered with QoS violations.
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(d) Queries rejected for lack of resources.

Fig. 2: Performance of ASET compared with static policies for the full-edge
topology. (a) (c) and (d) show averages of multiple runs with λ = 60.

The goal of the proposed adaptive scheduling is to learn
an optimal sequence of static network scheduling policies that
maximizes the percentage of successfully dispatched streams.
The agent collects various observations from the edge-cloud
infrastructure, building up the current state of the environment.
The agent evaluates a discrete set of actions and chooses an
action.

The agent infers the optimal policy sequence based on
the system conditions, seeking an optimal binding between
workloads and model variants that maximizes the percentage
of success queries. The policy, selected by the agent at time t,
is used to dispatch all incoming streams during the subsequent
time window. The resulting overall scheduling policy dynami-
cally maps a stream i to a model variant v and its deployment
on cluster n. The policy learned by the ASET agent leads to
a particular static policy sequence, which corresponds to any
function employed to estimate the optimal sequence of actions
that the agent should perform at each time window.

IV. PERFORMANCE EVALUATION

We evaluate ASET using a prototype implementation of an
edge inference system that will be released upon acceptance of
the paper.The prototype is used for small-scale experiments to
profile representative models and their variants, followed by
large-scale experiments on a simulator to compare ASET’s
performance to static scheduling policies.
Edge deployment. The results so far suggest that a good
distribution of computing resources is a key factor to improve
against static scheduling policies. As shown in Figure 2, the
benefits of using a dynamic scheduling approach become more
concrete in a full-edge topology, where resources are better
distributed on multiple smaller clusters in different locations.
In fact, Figure 2a shows that the dynamic approach of ASET is
able to achieve a constant improvement over any static policy,
with a higher success ratio over time. In particular, Figures 2cd
show that, while maintaining the same rejection rate as the best
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(a) Burst variation of λ from 20 to 100.
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(b) Steady variation of λ between 60 and 20.

Fig. 3: Performance of ASET varying the requests rate over time with two
different load variation patterns (full-edge topology).

static-policy, ASET effectively reduces the number of queries
that are handled violating one or more QoS requirements.
Moreover, Figure 2b shows that an ASET agent trained only
for λ = 60 can also generalize on different requests rate, even
supporting a load of more than 1600 queries per second (λ =
100) on a single antenna.
Dynamic input rate. We have performed some additional
experiments to evaluate how the system behaves in dynamic
situations where the requests rate varies over time. For this
purpose, we have set up some dynamic runs where the lambda
value changes every 150 seconds: a first pattern simulates
a particularly fast variation with values of 20, 60, and 100
clients per minute (Figure 3a); a different pattern simulates
a more steady scenario where the requests rate first moves
from 60 to 40 clients per minute, then drops to 20, and finally
slowly goes back to 60 (Figure 3b). Similar to previous plots,
the outcomes for this set of experiments are shown averaging
values over time for multiple runs (Figure 3). Results in both
figures show that having a dynamic requests arrival even intro-
duces a bigger margin for improvement that ASET effectively
exploits reaching the highest percentage of queries handled
successfully. This appears particularly evident in the case
where the variation between client arrivals is faster and bigger
(Figure 3a). Static policies perform well in stable system
loads, but struggle in dynamic scenarios. Adaptive algorithms
like ASET are more suitable for these situations, as they
learn optimal system optimization under different conditions.
ASET training is effective under previously unknown dynamic
conditions.

V. CONCLUSIONS

The paper introduces ASET, an adaptive algorithm based on
Reinforcement Learning, for scheduling inference workloads
at the network edge. It solves the problem of exploiting
scattered clusters of resources to serve inference queries from
multiple edge applications. ASET optimizes the binding be-
tween inference stream requests and available DNN models
across the network, maximizing throughput and satisfying
inference accuracy and end-to-end delay requirements. The
approach was evaluated over a large ISP network topology and
heterogeneous edge applications, showing that ASET improves
performance compared to static policies.
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