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Towards Distributed Machine Learning

 As the field of Machine Learning changes, it taps into the computational capabilities of
heterogeneous devices.

* For the Cloud, it has experienced a fast adaptation of GPUs/TPUs

NVIDIA’s Cloud Computing Solutions [1]



Towards Distributed Machine Learning

 As the field of Machine Learning changes, it taps into the computational capabilities of
heterogeneous devices.

* For the Cloud, it has experienced a fast adaptation of GPUs/TPUs

* Yet, computation becoming ubiquitous has motivated to push them closer to users, near the
necessary data

— Aiming to reduce latency and the risks of overloading servers



The challenge at the Edge

* We focus on resource-constrained devices in terms of:
— Computational capabilities
— Power limitations
> |t also includes passively cooled devices

* On the other hand, Deep Neural Networks (our target field) tend to require more than what is
available on such devices. For example:
— Raspberry Pi, NVIDIA Jetson Family, or similar
— Small form factor PCs, e.g., Intel NUC and similar



The opportunities for DNN optimization

« Early Exits
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The opportunities for DNN optimization

« Split Computing
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Inference
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Network split w.r.t user constraints
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Profiling @ edge & cloud

— How to select the exit and split points?
— How to dynamically insert exits?

EdgelessPart

 Still open questions:

—
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Profiling

« Measures runtime characteristics of the target devices

« Gathers memory usage and inference latency

Split Point Selection

« Combines profiling data and user constraints to balance the partitions at the edge and cloud

« The constraints are based on latency or DNN memory size.
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Early Exits with EdgelLessPart

« Once the split point has been determined, EdgelessPart uses it to limit the exit point search

* For the candidate exit points, it inserts custom (and small) DNN to serve as Early Exits
— These DNNs are given as part of user constraints.

« If the model has been pre-trained, EdgelLessPart will only tune the new layers

During Inference

« As EdgelessPart opts for leveraging the Edge first, all inferences will start there
« EdgelessPart uses per request confidence threshold to drive the early exiting

« If the Edge split does not reach enough accuracy, EdgelLessPart will send the intermediate
results to the cloud for further processing
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Our Preliminary Results

Memory constrained with linearly placed EEs
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Normalized Runtime

Our Preliminary Results
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Normalized Runtime

Our Preliminary Results

Latency constrained with linearly inserted EEs
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Normalized Runtime

Our Preliminary Results

Latency constrained with Pareto inserted EEs
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Conclusions and Future Work

* From our results, balancing between the Edge and Cloud is not trivial.
— That includes DNN selection

* Nonetheless, EdgelLessPart can generate optimized DNNs that reduce cost by relying on edge
devices

» Qur current research shows that more optimizations are necessary:
— Early Exits are still manually designed
— EdgelessPart uses just one network
> We plan to address this by including Neural Architecture Search
— EdgelessPart still relies of user input
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