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Today’s Agenda
1. Early Exits and Split Computing 

2. Our focus 

3. EdgeLessPart 

4. Some results 

5. Conclusions and Future Work
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Towards Distributed Machine Learning
• As the field of Machine Learning changes, it taps into the computational capabilities of 

heterogeneous devices. 

• For the Cloud, it has experienced a fast adaptation of GPUs/TPUs
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NVIDIA’s Cloud Computing Solutions [1]



 

Towards Distributed Machine Learning
• As the field of Machine Learning changes, it taps into the computational capabilities of 

heterogeneous devices. 

• For the Cloud, it has experienced a fast adaptation of GPUs/TPUs 

• Yet, computation becoming ubiquitous has motivated to push them closer to users, near the 
necessary data 
− Aiming to reduce latency and the risks of overloading servers
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The challenge at the Edge
• We focus on resource-constrained devices in terms of: 
− Computational capabilities 
− Power limitations 
‣ It also includes passively cooled devices 

• On the other hand, Deep Neural Networks (our target field) tend to require more than what is 
available on such devices. For example: 
− Raspberry Pi, NVIDIA Jetson Family, or similar 
− Small form factor PCs, e.g., Intel NUC and similar
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The opportunities for DNN optimization
• Early Exits
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The opportunities for DNN optimization
• Split Computing
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The opportunities for DNN optimization
• Split Computing
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Edge Cloud



 

The opportunities for DNN optimization
• Split Computing
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Edge Cloud



 

EdgeLessPart
• Still open questions: 
− How to select the exit and split points? 
− How to dynamically insert exits?
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Profiling
• Measures runtime characteristics of the target devices 

• Gathers memory usage and inference latency
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Split Point Selection
• Combines profiling data and user constraints to balance the partitions at the edge and cloud 

• The constraints are based on latency or DNN memory size.



 

Early Exits with EdgeLessPart
• Once the split point has been determined, EdgeLessPart uses it to limit the exit point search 

• For the candidate exit points, it inserts custom (and small) DNN to serve as Early Exits 
− These DNNs are given as part of user constraints. 

• If the model has been pre-trained, EdgeLessPart will only tune the new layers

13

During Inference
• As EdgeLessPart opts for leveraging the Edge first, all inferences will start there 

• EdgeLessPart uses per request confidence threshold to drive the early exiting 

• If the Edge split does not reach enough accuracy, EdgeLessPart will send the intermediate 
results to the cloud for further processing



 

Our Preliminary Results
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Conclusions and Future Work
• From our results, balancing between the Edge and Cloud is not trivial. 
− That includes DNN selection 

• Nonetheless, EdgeLessPart can generate optimized DNNs that reduce cost by relying on edge 
devices 

• Our current research shows that more optimizations are necessary: 
− Early Exits are still manually designed 
− EdgeLessPart uses just one network 
‣ We plan to address this by including Neural Architecture Search 
− EdgeLessPart still relies of user input
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