
EdgeLessPart: Distributed and Progressive Inference
for the Edge-Cloud Continuum

1st Isaac David Núñez Araya
Chair for Computer Architecture and Parallel Systems

Technische Universität München
Garching (near München), Germany

isaac.nunez@tum.de

2nd Michael Gerndt
Chair for Computer Architecture and Parallel Systems

Technische Universität München
Garching (near München), Germany

gerndt@in.tum.de

3rd Mohak Chadha
Chair for Computer Architecture and Parallel Systems

Technische Universität München
Garching (near München), Germany

mohak.chadha@tum.de

Abstract—DNN inference at the edge is highly desirable,
offering enhanced data privacy, cost benefits from specialized
hardware, and reduced latency. Nonetheless, deploying DNNs
on edge devices remains challenging due to resource limitations,
often requiring cloud support for complex networks. Current
research addresses this by splitting a DNN across the edge and
cloud. It optimizes inference by inserting early classifiers between
hidden layers, which reduces execution times by bypassing
additional layer evaluations. Existing approaches focus on loss
functions with system-defined classifiers and distribution with
custom schedulers. Such an approach can split these classifiers
across the edge and cloud, hindering performance as offloading
remains necessary. To this end, we propose EdgeLessPart, a
platform- and network-agnostic framework to evaluate DNN
distribution and progressive inference on edge-cloud scenarios.
EdgeLessPart uses code rendering to accept any exit classifier.
Further, EdgeLessPart relies on device profile data and user
constraints (latency or memory) to split a DNN, ensuring the
early classifiers remain local to each part. EdgeLessPart thus
effectively evaluates the performance and cost of distributed and
progressive DNN inference on edge-cloud environments.

Index Terms—Edge Deep Learning, Early Exits, Split Com-
puting

I. INTRODUCTION

Current technology developments have made computation
ubiquitous, forcing the decentralization of services towards
the edge of the network, near end-users and data sources
[1], powered by resource-constrained devices such as Jetson
Orin, Raspberry Pi or low-power computers. One notable
field still struggling to adapt to the limited resources at the
edge is Deep Neural Networks (DNN), since more complex
networks demand increasingly computational power [2]. To
this end, the Cloud offers a rich infrastructure that can run
the most computationally-intensive applications. Nonetheless,
it still suffers from the caveats of the cloud: centralization,
reduced privacy as the provider controls the incoming data, and
higher costs driven by the price of modern hardware required
to handle many clients. In contrast, edge devices can afford

their computational limitations as they typically serve fewer
clients.

In an effort to bring inference of more complex networks
towards the edge, current research explores progressive and
distributed inference [3, 4, 5, 6]. Progressive inference is
possible by inserting small classifier networks between the
hidden layers, called Early Exits (EE) [7], while the place to
insert them is an exit point. The EEs enable stopping execution
at intermediate places within the network, given that some
inputs are easily classifiable at earlier points [8]. For example,
classifying a picture of a cat with a solid color background
can be easier than a background from nature. For the former
picture, a few layers can produce high confidence, which is
not granted for the latter. Current works on EEs [9, 10, 8, 7,
11, 12, 13] focus on their training with custom loss functions
and system-defined exit points and architecture.

In the case of distributed inference, active research explores
the generation of DNN splits via Split Computing (SC) [14, 15,
16, 17, 18, 19]. These works utilize runtime measurements to
determine the optimal split point, i.e., the connection between
two hidden layers that will improve performance. Yet, their
combination with EEs can distribute an exit between the edge
and cloud, as EE are inserted before splitting, resulting in
more data transmission. Nevertheless, our previous example
can benefit from SC and EE. Whenever the edge device cannot
yield high accuracy using a network part with EE, it can
proceed in the cloud until an exit meets the necessary accuracy
or evaluates the complete network.

Toward this, we propose EdgeLessPart to evaluate the
effect of SC and EE on performance and cost. EdgeLessPart
selects the candidate exit and split points based on user-
defined constraints and target device profiling, which considers
inference time and memory consumption. Unlike previous
works, EdgeLessPart supports application-specific EEs via
code rendering, and the placement of EEs is constrained within
each network part. EdgeLessPart remains platform-agnostic by
relying on standard training methods. Hence, EdgeLessPart



provides a novel understanding of dynamic DNN inference
for edge-cloud scenarios.

II. EDGELESSPART

Here, we introduce EdgeLessPart: a framework to explore
distributed and progressive inference for edge-cloud scenarios.
Figure 1 presents the workflow EdgeLessPart employs to
generate the progressive network parts. Since EdgeLessPart
can be deployed anywhere, i.e., platform-agnostic, it can
leverage local resources, such as accelerators on edge devices.

P
rofiling

 @
 ed

g
e &

 cloud

N
etw

ork sp
lit w

.r.t user constraints

User 

Constraints

EE

Network

EE P
lacem

ent

EE Training

Edge Split

Cloud Split

Inference

Inference 
R

esult

EdgeLessPart

Fig. 1. EdgeLessPart workflow to optimize a given DNN for the edge-cloud
continuum. Input network[20]. Output network[21].

To begin the optimization, EdgeLessPart requires a DNN,
user constraints, and an exit network. Unlike previous works,
EdgeLessPart translates the EE network, stemming from the
user input, into executable code. This approach enables users
to employ their DNN’s insights to determine an appropriate
EE network instead of relying on default ones. The constraints
determine the exit and split points once the profiling is done.
EdgeLessPart can select the split point based on memory
or latency constraints. For latency, EdgeLessPart will split
wherever a set of layers on the edge runs as long as the
complete network in the cloud. We limit to one split per
network to avoid network traffic overhead. For memory, the
user decides the percentage of layers to run on the edge. Then,
the cloud will run the remaining ones. Considering the split
point, EEs are placed linearly or pareto [22] distributed within
each network split. We limit to three EEs per part to mitigate
the effect on memory usage.

Once the points have been generated, EdgeLessPart inserts
the EEs, trains them, and generates the respective network
parts. After this step, EdgeLessPart evaluates the resulting
DNNs across the target clusters. It explores a range of con-
fidence thresholds (cthr), based on the validation accuracy.
Unlike some previous works, EdgeLessPart infers in the edge
first. In case the local EEs do not yield accuracy greater than
cthr, it will offload to the cloud, where the next network part
will continue as it happens in the edge.

III. RESULTS

Evaluation Setup: The evaluation environment for Edge-
LessPart combines two clusters, edge and cloud respectively.
The edge is a pair of Jetson Orin Nano (the 40 TOPS model)
with a Virtual Machine (VM) as the control node. The cloud
is hosted by our university’s provider and it features three

nodes with 45GB of RAM and 10 vCPUS each. We developed
EdgeLessPart on top of TensorFlow [23] v2.16.1 with CUDA
and CPU support for the edge and cloud, respectively. We
train our ResNet50 [24], MobileNetV2 [25], and InceptionV3
[26] using their respective parameters and the CIFAR-10 [27]
dataset. For the exit network, we replicate the classifier of each
original network. Further, we evaluate a range of cthr between
0.3 and 0.9 to determine the impact on inference time, memory
usage, and cloud cost. We use Google Cloud Functions’ cost
model [28], as users must only pay for used resources.

0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

R
un

tim
e

Aggregated Inference Time

0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

M
em

or
y

U
sa

ge

Mean Cloud Memory Usage

0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

C
os

t

Cost Improvement

Confidence Threshold

Memory constrained with linearly placed EEs

ResNet50 MobileNetV2 InceptionV3 Baseline

Fig. 2. Distributed and Progressive DNN performance for linearly distributed
EEs.

Outcomes: To evaluate EdgeLessPart, we partition each
DNN wherever a set of layers require 70% of memory from
the complete network. Here, Figures 2 and 3 present the
performance differences once the EEs are placed linearly or
Pareto within each network part. In the case of ResNet50,
placing EEs linearly results in 20% more costs than Pareto for
cthr ≥ 0.8. Additionally, Pareto distribution of EE shows lower
inference times with considerable speedups for ResNet50 and
InceptionV3. Nonetheless, our results show the impact of SC
and EE on the performance of MobileNetV2, an optimized
DNN for mobile devices. For higher cthr, the overhead of inter-
mediate classifiers and network traffic outweighs the original
model. Yet, linear EEs allow for a smaller MobileNetV2 with
desirable accuracy, depicted by the cost improvements and
memory usage in Figure 2, which reflects edge-only inference.

0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

R
un

tim
e

Aggregated Inference Time

0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

M
em

or
y

U
sa

ge

Mean Cloud Memory Usage

0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

C
os

t

Cost Improvement

Confidence Threshold

Memory constrained with Pareto placed EEs

ResNet50 MobileNetV2 InceptionV3 Baseline

Fig. 3. Distributed and Progressive DNN performance for Pareto distributed
EEs.

In contrast, InceptionV3 also demonstrates the importance
of cloud-offloading, considering DNN-specific EEs, with 40%
and 50% faster inference for Pareto and linearly distributed
EEs, respectively. Given its complex architecture, such im-
provements result in 5% and 10% cost (compared to cloud-
only inference) for linearly and Pareto EEs, respectively. We
argue that its cost is negligible since it enables higher accuracy.



IV. CONCLUSION AND FUTURE WORK

The results shown in § III demonstrates the importance of
further DNN optimizations targeting edge devices, considering
the network architecture and its placement. The results show
better performance for complex DNNs when coupled with
progressive and distributed inference capabilities. EdgeLess-
Part enables this through progressive (via EE) and distributed
(with SC) inference. By collecting runtime information of a
target DNN, EdgeLessPart generates distributed and progres-
sive DNNs to investigate the best selection of EEs and split
points that improve inference time, cloud memory usage, and
cost. It leverages edge resources while offloading to the cloud
if the accuracy is insufficient.

Further, our results present another optimization avenue:
optimize each network part to leverage local resources for
performance gains. Given the realm of optimizations within
EdgeLessPart, we intend to integrate a Neural Architecture
Search (NAS) module. It can search for smaller and more
capable network parts at the edge and automatically search
for the exit classifier per exit point. To further limit the
search space, NAS can rely on Multi-Objective Optimizations
(MOO) that model the target clusters to ensure each split
does not exhaust local resources while improving performance.
Moreover, such a module allows for better exit and split points,
which EdgeLessPart can leverage to bridge on-device DL with
the cloud, where the MOO can guide the search to meet on-
device constraints.

REFERENCES

[1] Xiaofei Wang et al. “Convergence of Edge Computing
and Deep Learning: A Comprehensive Survey”. In:
IEEE Communications Surveys & Tutorials 22.2 (2020).
Conference Name: IEEE Communications Surveys &
Tutorials, pp. 869–904. ISSN: 1553-877X. DOI: 10 .
1109/COMST.2020.2970550.

[2] Radosvet Desislavov, Fernando Martı́nez-Plumed, and
José Hernández-Orallo. “Trends in AI inference energy
consumption: Beyond the performance-vs-parameter
laws of deep learning”. en. In: Sustainable Computing:
Informatics and Systems 38 (Apr. 2023), p. 100857.
ISSN: 22105379. DOI: 10.1016/j.suscom.2023.100857.
URL: https : / / linkinghub . elsevier . com / retrieve / pii /
S2210537923000124 (visited on 01/10/2024).

[3] Liekang Zeng et al. “Boomerang: On-Demand Co-
operative Deep Neural Network Inference for Edge
Intelligence on the Industrial Internet of Things”. In:
IEEE Network 33.5 (Sept. 2019). Conference Name:
IEEE Network, pp. 96–103. ISSN: 1558-156X. DOI: 10.
1109/MNET.001.1800506.

[4] En Li et al. “Edge AI: On-Demand Accelerating Deep
Neural Network Inference via Edge Computing”. In:
IEEE Transactions on Wireless Communications 19.1
(Jan. 2020). Conference Name: IEEE Transactions on
Wireless Communications, pp. 447–457. ISSN: 1558-
2248. DOI: 10.1109/TWC.2019.2946140.

[5] Stefanos Laskaridis et al. “SPINN: synergistic pro-
gressive inference of neural networks over device and
cloud”. en. In: Proceedings of the 26th Annual Inter-
national Conference on Mobile Computing and Net-
working. London United Kingdom: ACM, Sept. 2020,
pp. 1–15. ISBN: 978-1-4503-7085-1. DOI: 10 . 1145 /
3372224 . 3419194. URL: https : / / dl . acm . org / doi / 10 .
1145/3372224.3419194 (visited on 02/12/2023).

[6] Jin Huang, Hui Guan, and Deepak Ganesan. “Re-
thinking computation offload for efficient inference on
IoT devices with duty-cycled radios”. en. In: Pro-
ceedings of the 29th Annual International Conference
on Mobile Computing and Networking. Madrid Spain:
ACM, July 2023, pp. 1–15. ISBN: 978-1-4503-9990-
6. DOI: 10 .1145/3570361 .3592514. URL: https : / /dl .
acm . org / doi / 10 . 1145 / 3570361 . 3592514 (visited on
08/13/2023).

[7] Surat Teerapittayanon, Bradley McDanel, and Hsiang-
Tsung Kung. “BranchyNet: Fast Inference via Early
Exiting from Deep Neural Networks”. In: arXiv: Neural
and Evolutionary Computing (Sept. 2017). DOI: 10 .
1109/ICPR.2016.7900006.

[8] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras.
“Shallow-Deep Networks: Understanding and Mitigat-
ing Network Overthinking”. en. In: Proceedings of the
36th International Conference on Machine Learning.
ISSN: 2640-3498. PMLR, May 2019, pp. 3301–3310.
URL: https://proceedings.mlr.press/v97/kaya19a.html
(visited on 08/03/2023).

[9] Meiqi Wang et al. “DynExit: A Dynamic Early-Exit
Strategy for Deep Residual Networks”. In: 2019 IEEE
International Workshop on Signal Processing Systems
(SiPS). ISSN: 2374-7390. Oct. 2019, pp. 178–183. DOI:
10.1109/SiPS47522.2019.9020551.

[10] Stefanos Laskaridis et al. “HAPI: hardware-aware pro-
gressive inference”. en. In: Proceedings of the 39th
International Conference on Computer-Aided Design.
Virtual Event USA: ACM, Nov. 2020, pp. 1–9. ISBN:
978-1-4503-8026-3. DOI: 10 .1145/3400302.3415698.
URL: https://dl.acm.org/doi/10.1145/3400302.3415698
(visited on 08/01/2023).

[11] Ershad Banijamali et al. “Pyramid Dynamic Inference:
Encouraging Faster Inference Via Early Exit Boosting”.
en. In: ICASSP 2023 - 2023 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP). Rhodes Island, Greece: IEEE, June 2023,
pp. 1–5. ISBN: 978-1-72816-327-7. DOI: 10 . 1109 /
ICASSP49357.2023.10096928. URL: https://ieeexplore.
ieee.org/document/10096928/ (visited on 08/04/2023).

[12] Wangchunshu Zhou et al. “BERT Loses Patience: Fast
and Robust Inference with Early Exit”. In: Advances
in Neural Information Processing Systems. Vol. 33.
Curran Associates, Inc., 2020, pp. 18330–18341. URL:
https : / / proceedings . neurips . cc / paper / 2020 / hash /
d4dd111a4fd973394238aca5c05bebe3 - Abstract . html
(visited on 08/03/2023).



[13] Ji Xin et al. DeeBERT: Dynamic Early Exiting for
Accelerating BERT Inference. arXiv:2004.12993 [cs].
Apr. 2020. URL: http://arxiv.org/abs/2004.12993 (visited
on 08/04/2023).

[14] Minchen Yu et al. “Gillis: Serving Large Neural Net-
works in Serverless Functions with Automatic Model
Partitioning”. In: 2021 IEEE 41st International Con-
ference on Distributed Computing Systems (ICDCS).
ISSN: 2575-8411. July 2021, pp. 138–148. DOI: 10 .
1109/ICDCS51616.2021.00022.

[15] Liekang Zeng et al. “CoEdge: Cooperative DNN Infer-
ence With Adaptive Workload Partitioning Over Het-
erogeneous Edge Devices”. In: IEEE/ACM Transactions
on Networking 29.2 (Apr. 2021). Conference Name:
IEEE/ACM Transactions on Networking, pp. 595–608.
ISSN: 1558-2566. DOI: 10.1109/TNET.2020.3042320.

[16] Beibei Zhang et al. “Dynamic DNN Decomposition
for Lossless Synergistic Inference”. In: 2021 IEEE
41st International Conference on Distributed Comput-
ing Systems Workshops (ICDCSW). ISSN: 2332-5666.
July 2021, pp. 13–20. DOI: 10.1109/ICDCSW53096.
2021.00010.

[17] Jananie Jarachanthan et al. “AMPS-Inf: Automatic
Model Partitioning for Serverless Inference with Cost
Efficiency”. In: Proceedings of the 50th International
Conference on Parallel Processing. ICPP ’21. New
York, NY, USA: Association for Computing Machinery,
2021, pp. 1–12. ISBN: 978-1-4503-9068-2. DOI: 10 .
1145/3472456.3472501. URL: https://doi.org/10.1145/
3472456.3472501 (visited on 08/08/2023).

[18] Hongzhou Liu et al. “LoADPart: Load-Aware Dy-
namic Partition of Deep Neural Networks for Edge
Offloading”. In: IEEE International Conference on Dis-
tributed Computing Systems (July 2022). DOI: 10.1109/
ICDCS54860.2022.00053.

[19] Min Xue et al. “EosDNN: An Efficient Offloading
Scheme for DNN Inference Acceleration in Local-
Edge-Cloud Collaborative Environments”. In: IEEE
Transactions on Green Communications and Network-
ing 6.1 (Mar. 2022). Conference Name: IEEE Trans-
actions on Green Communications and Networking,
pp. 248–264. ISSN: 2473-2400. DOI: 10.1109/TGCN.
2021.3111731.

[20] Architecture of DNN. URL: https : / / cdn - images -
1 . medium . com / v2 / resize : fit : 800 / 1 * 5egrX --
WuyrLA7gBEXdg5A.png (visited on 11/02/2024).

[21] Valdivino Santiago Júnior. Deep neural networks:
How to define? en. Oct. 2021. URL: https : / /
towardsdatascience .com/deep- neural - networks - how-
to-define-73d87bf36421 (visited on 11/02/2024).

[22] Explaining the 80-20 Rule with the Pareto Distribution
— D-Lab. URL: https : / / dlab . berkeley . edu / news /
explaining- 80- 20- rule- pareto- distribution (visited on
10/10/2023).

[23] Martı́n Abadi et al. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. Software avail-

able from tensorflow.org. 2015. URL: https : / / www .
tensorflow.org/.

[24] Kaiming He et al. “Deep Residual Learning for Image
Recognition”. In: (Dec. 2015). arXiv:1512.03385 [cs].
URL: http : / / arxiv . org / abs / 1512 . 03385 (visited on
08/30/2023).

[25] Mark Sandler et al. “MobileNetV2: Inverted Resid-
uals and Linear Bottlenecks”. In: (Mar. 2019).
arXiv:1801.04381 [cs]. URL: http://arxiv.org/abs/1801.
04381 (visited on 08/30/2023).

[26] Christian Szegedy et al. Rethinking the Inception Ar-
chitecture for Computer Vision. arXiv:1512.00567 [cs].
Dec. 2015. URL: http : / / arxiv . org / abs / 1512 . 00567
(visited on 08/30/2023).

[27] CIFAR-10 and CIFAR-100 datasets. URL: https://www.
cs.toronto.edu/∼kriz/cifar.html (visited on 08/30/2023).

[28] Pricing — Cloud Functions. en. URL: https : / / cloud .
google.com/functions/pricing (visited on 08/29/2023).


