CaRE: Towards Carbon and Resource Efficient Orchestration at the Cloud-Edge Continuum

Georgia Christofidi Francisco Álvarez Terribas Jesus Alberto Omaña Iglesias

Nicolas Kourtellis


Thaleia Dimitra Doudali



The problem of Carbon Emissions Reduction

Challenge: Increased Carbon Emissions due to exponential growth of Computing.

Pause with no strong latency requirements (e.g., batch jobs)

Resume when green energy available.

Sources [1]: Beyond Efficiency: Scaling AI Sustainably [2]: https://towardsdatascience.com/the-carbon-footprint-of-gpt-4d6c676eb21ae

https://app.electricitymaps.com/map/72h

2/13

Temporal Shifting

The problem of Carbon Emissions Reduction

Microsoft

During the last 2 years existing systems are **redisigned** with the end goal of **reducing carbon emissions**.

Going Green for Less Green: Optimizing the Cost of Reducing Cloud Carbon Emissions

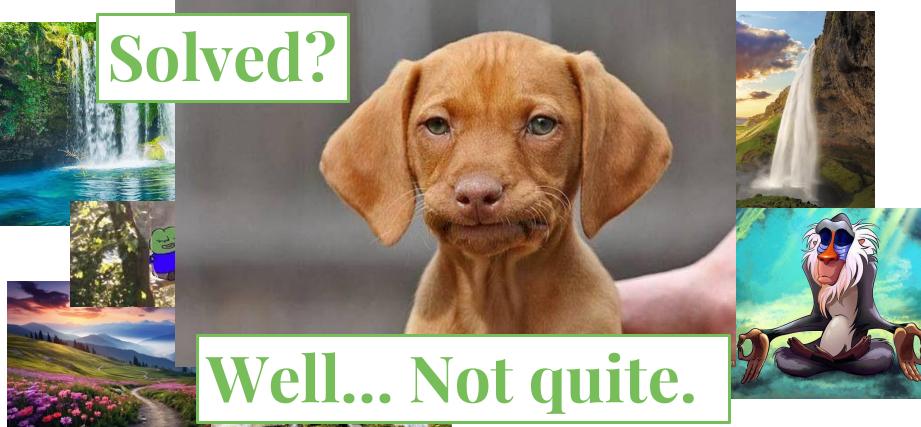
ASPLOS '24

Ecovisor: A Virtual Energy System for Carbon-Efficient Applications

ASPLOS '23

Carbon negative

Net-zero carbon We aim to achieve net-zero emissions across all of


our operations and value chain by 2030

Our carbon negative commitment includes three primary areas: reducing carbon emissions, increasing use of carbon-free electricity, and carbon removal. We made meaningful progress on carbon-free electricity and carbon removal in FY23. Microsoft has taken a first-mover approach to supporting **carbon-free electricity** infrastructure, making long-term investments to bring more carbonfree electricity onto the grids where we operate. Carbon Explorer: A Holistic Framework for Designing Carbon Aware Datacenters Meta

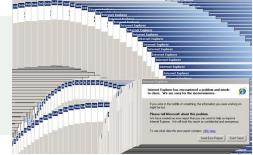
CARIBOU: Fine-Grained Geospatial Shifting of Serverless Applications for Sustainability

SOSP '24

The problem of Carbon Emissions Reduction

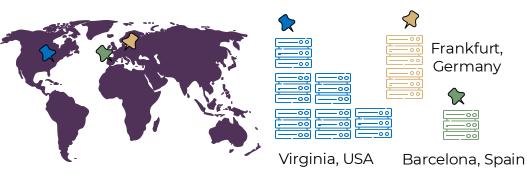
Implications of CO₂ reductions on other aspects

Problem: **Resource**, **Performance**, and **Cost** are compromised when reducing CO₂.



Performance Awareness

Only **specific types** of jobs can be shifted in time.



Not all workloads can wait!

Takeaway: Optimizing Carbon + Resource + Cost + Performance = Harder than it looks.

Applications across the Edge–Cloud Continuum

Heterogeneous resources + diverse applications = complex trade-offs

Real-World Conflicting Requirements

1. Movie Platform Recommendations

- Not time-sensitive. ٠
- Global platform, resources worldwide. ٠

Carbon Efficiency Focus

2. Small National Business in Spain 💢

- Limited local resources.
- Renting resources elsewhere is costly.

Cost Constraints

3. Online Gaming

- Latency-critical application.
- Carbon efficience is secondary to user experience.

Performance Requirements

Takeaway: Each application across the cloud-edge continuum values carbon, resources, cost, and performance differently.

Motivation – Preliminary Results

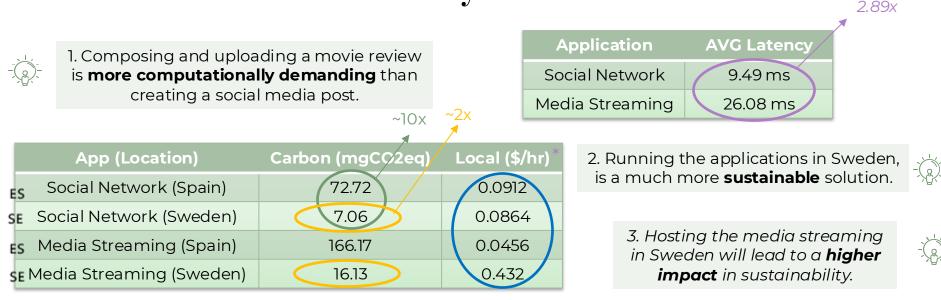
1. Experimental Methodology

Usecase: Company with entire cloud-edge infrastructure deployed in Spain.

Location	Carbon Intesity	
Spain ES	206 gCO2eq/kWh	The lower the better
Sweden SE	20 gCO2eq/kWh	

Goal: Quantify the additional cost (\$) to rent resources in Sweden to reduce the carbon footprint.

2. Experimental details

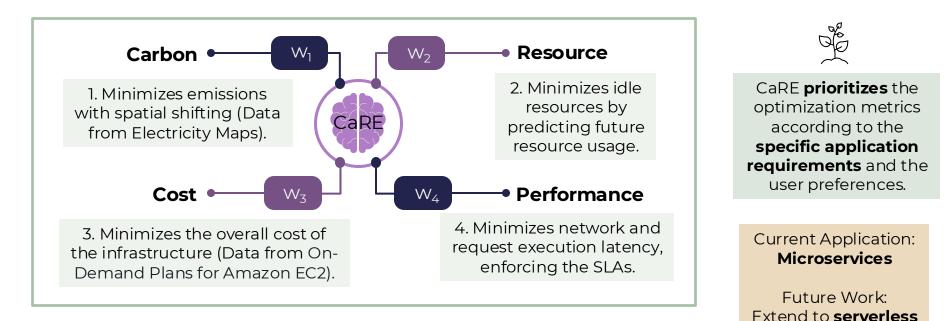

Applications (using the Microservices benchmark DeathStarBench)			
Social Network	Media streaming		
24 Microservices	32 Microservices		
Users send requests to compose posts.	Movie platform where users can log in and upload movie reviews.		

Workload

10 minutes

- 1,000 requests to each application
- Time steps follow a Poisson distribution, emulating multiple concurrent users

Motivation – Preliminary Results

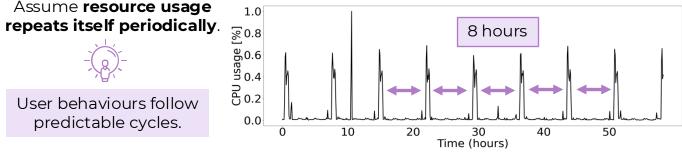

4. **Double the budget** is needed for similar infrastructure in a different country. Users from Spain will connect first to the closest DC → the application runs on both locations.

Takeaway: Become greener → More money. Choose wisely what to offload!

We need an application-specific solution for the carbon – cost trade-off.

*Source: Amazon EC2 On-Demand Pricing. Hourly rate in the eu-south-2 region for Spain, eu-north-1 region for Sweden. 8 / 13

CaRE: A Carbon and Resource Efficient Orchestrator for the Cloud–Edge Continuum

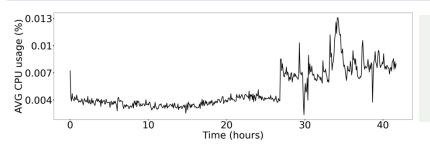

-

Takeaway: CaRE jointly optimizes the **carbon**, **resource** and **cost** efficiency of the workloads, complying with **SLAs**.

applications.

Challenge – Accurate Resource Usage Prediction

1. Proposed Approach: Persistent Forecast.



Cloud data is **highly correlated** in time.

Highly **accurate** on cloud data with average prediction error 7%.*

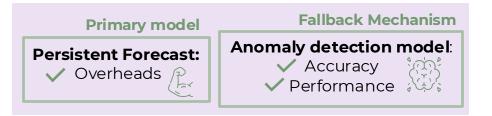
* Is Machine Learning Necessary for Cloud Resource Usage Forecasting? SoCC '23. G. Christofidi, K. Papaioannou, T. D. Doudali.

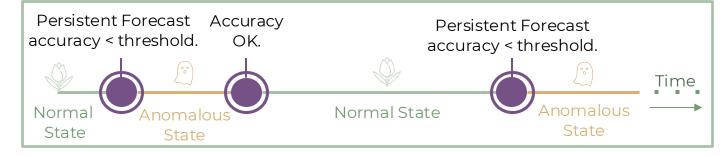
2. Limitations of the Persistent Forecast – hard to predict patterns.

Resource utilization is often **unpredictable**, even when everything is running correctly. When unexpected usage occurs:

- Lower resource efficiency.
- Potential resource contention.
- Higher carbon footprint.

We deploy anomaly detection techniques, to predict highly dynamic resource usage.

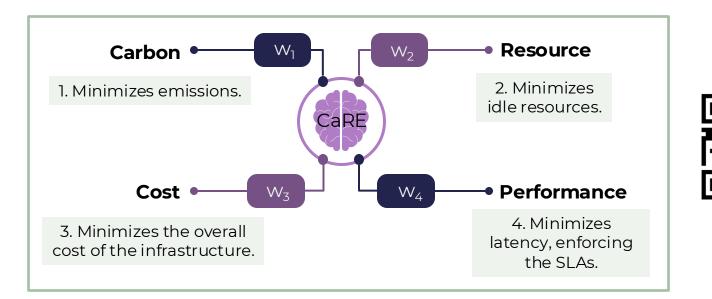

Proposed Approach for Prediction


3. Handling **Anomalies** with a **Two-Model Approach**.

When the persistent forecast accuracy drops below a minimum accuracy threshold, we enter an anomalous state.

Fallback Mechanism that predicts:Duration of the anomaly.

- **Resource usage** during this time. •



For the **anomaly detection model** we will explore a variety of ML and non-ML methods commonly used for anomaly detection.

CaRE: A Carbon and Resource Efficient Orchestrator for the Cloud-Edge Continuum

