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The problem of Carbon Emissions Reduction
Challenge: Increased Carbon Emissions due to exponential growth of Computing.

Key drivers: 
• ML applications
• Generative AI 
• Video streaming

AI 
Model 

Carbon Impact of 
Training*

Real-word equivalent 
example

GPT-3  500 metric tons of CO2eq.[1] 500 round-trip flights 
from Madrid to New York 

for one passenger.

GPT-4 12,456 - 14,994 metric 
tons CO2eq (estimated).[2]

50-60 fully loaded 
Boeing 747 flights.

Sources [1]: Beyond Efficiency: Scaling AI Sustainably
[2]: https://towardsdatascience.com/the-carbon-footprint-of-gpt-4-
d6c676eb21ae
https://app.electricitymaps.com/map/72h

*Training only accounts for 43% 
of lifecycle carbon emissions. [1]

Solution: Spatial and Temporal Workload Shifting.

Fossil-fuel-
heavy regions

Greener areas 

Workload 
Migration

[3] Spatial Shifting

Pause with no strong latency 
requirements (e.g., batch jobs)

Resume when green energy available.

Temporal Shifting
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The problem of Carbon Emissions Reduction
During the last 2 years existing systems are redisigned 
with the end goal of reducing carbon emissions.

ASPLOS ‘24

ASPLOS ‘23

SOSP ‘24



4 / 13

The problem of Carbon Emissions Reduction

Well… Not quite.

Solved?
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Implications of CO2 reductions on other aspects
Problem: Resource, Performance, and Cost are compromised when reducing CO2.

Resource Awareness
Idle!

• Resource Waste
• Energy Inefficiency
• Increased Cost

Temporal Shifting

Cost Awareness
Small national 

companies need 
additional budget to 
rent remote resources 

in greener regions.Spatial Shifting

Takeaway: Optimizing Carbon + 
Resource + Cost + Performance = 

Harder than it looks.

Performance Awareness

Not all workloads can wait!

Only specific types of jobs 
can be shifted in time.
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Applications across the Edge-Cloud Continuum

Heterogeneous resources + diverse 
applications = complex trade-offs

Takeaway: Each application 
across the cloud-edge continuum 
values carbon, resources, cost, and 

performance differently. 

Real-World Conflicting Requirements

1. Movie Platform Recommendations

Carbon Efficiency Focus

• Not time-sensitive.
• Global platform, resources worldwide.

• Limited local resources.
• Renting resources elsewhere is costly.

2. Small National Business in Spain

Cost Constraints

3. Online Gaming

Performance Requirements

• Latency-critical application.
• Carbon efficience is secondary to user experience.

Virginia, USA Barcelona, Spain

Frankfurt, 
Germany



7 / 13

Motivation – Preliminary Results

Goal: Quantify the additional cost ($)  to rent resources in Sweden to reduce the carbon footprint.

Usecase: Company with entire 
cloud-edge infrastructure 

deployed in Spain. 

Location Carbon Intesity

Spain 206 gCO2eq/kWh

Sweden 20 gCO2eq/kWh

1. Experimental Methodology

2. Experimental details

Social Network

Movie platform where 
users can log in and

upload movie reviews.

24 Microservices

Users send requests 
to compose posts.

Media streaming

32 Microservices

Applications (using the Microservices 
benchmark DeathStarBench)

• 1,000 requests to each application
• Time steps follow a Poisson distribution, 

emulating multiple concurrent users 

Workload 10 minutes

The lower 
the better
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App (Location) Carbon (mgCO2eq) Local ($/hr)

Social Network (Spain) 72.72 0.0912

Social Network (Sweden) 7.06 0.0864

Media Streaming (Spain) 166.17 0.0456

Media Streaming (Sweden) 16.13 0.432

Application AVG Latency

Social Network 9.49 ms

Media Streaming 26.08 ms

*

Motivation – Preliminary Results
1. Composing and uploading a movie review 
is more computationally demanding than 

creating a social media post.

2.89x

~10x

2. Running the applications in Sweden, 
is a much more sustainable solution.

4. Double the budget is needed for similar infrastructure in a different country. Users 
from Spain will connect first to the closest DC → the application runs on both locations.

Takeaway: Become greener → More money. 
Choose wisely what to offload!

We need an application-specific solution for the carbon – cost trade-off.

*Source: Amazon EC2 On-
Demand Pricing. Hourly rate 
in the eu-south-2 region for 
Spain, eu-north-1 region for 
Sweden. 

3. Hosting the media streaming 
in Sweden will lead to a higher 

impact in sustainability.

~2x
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CaRE: A Carbon and Resource Efficient 
Orchestrator for the Cloud-Edge Continuum

1. Minimizes emissions 
with spatial shifting (Data 

from Electricity Maps).

2. Minimizes idle 
resources by 

predicting future 
resource usage.

4. Minimizes network and 
request execution latency, 

enforcing the SLAs.

3. Minimizes the overall cost of 
the infrastructure (Data from On-
Demand Plans for Amazon EC2).

Carbon Resource

Cost Performance

CaRE

w1 w2

w3 w4

Takeaway: CaRE jointly optimizes the carbon, resource
and cost efficiency of the workloads, complying with SLAs.

CaRE prioritizes the 
optimization metrics 

according to the 
specific application

requirements and the 
user preferences.

Current Application: 
Microservices

Future Work: 
Extend to serverless

applications.
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1. Proposed Approach: Persistent Forecast. 

Challenge – Accurate Resource Usage Prediction

Assume resource usage 
repeats itself periodically.

User behaviours follow 
predictable cycles.

8 hours

Cloud data is highly correlated in time.

2. Limitations of the Persistent Forecast – hard to predict patterns.

Resource utilization is 
often unpredictable, 

even when 
everything is running 

correctly.

When unexpected usage occurs: 
• Lower resource efficiency.
• Potential resource contention.
• Higher carbon footprint.

We deploy anomaly detection techniques, to predict highly dynamic resource usage.

Highly accurate on 
cloud data with average 

prediction error 7%. *

* Is Machine Learning Necessary for Cloud 
Resource Usage Forecasting? SoCC ‘23. G. 
Christofidi, K. Papaioannou, T. D. Doudali.
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Proposed Approach for Prediction
3. Handling Anomalies with a Two-Model Approach.

When the persistent forecast accuracy drops 
below a minimum accuracy threshold, we enter 

an anomalous state.

Fallback Mechanism that predicts:
• Duration of the anomaly.
• Resource usage during this time.

Persistent Forecast:
Overheads

Primary model
Anomaly detection model: 

Accuracy 
Performance

Fallback Mechanism

For the anomaly detection model we will explore a variety of ML 
and non-ML methods commonly used for anomaly detection.

Normal 
State

Persistent Forecast 
accuracy < threshold.

Accuracy 
OK.

Anomalous
State

Persistent Forecast 
accuracy < threshold.

Normal State Anomalous
State

. . . Time
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CaRE: A Carbon and Resource Efficient 
Orchestrator for the Cloud-Edge Continuum

1. Minimizes emissions. 2. Minimizes 
idle resources.

4. Minimizes 
latency, enforcing 

the SLAs.

3. Minimizes the overall 
cost of the infrastructure.

Carbon Resource

Cost Performance

CaRE

w1 w2

w3 w4
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