
CaRE: Towards Carbon and Resource Efficient
Orchestration at the Cloud-Edge Continuum

Georgia Christofidi
Telefónica Research,

Universidad Politécnica de Madrid
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Abstract—The growing demand for low-latency and high-
performance applications has resulted in the development of
the cloud-edge continuum, where workloads are dynamically
managed across cloud and edge resources to balance performance
and resource efficiency. However, the expansion of the infras-
tructure to edge nodes introduces significant carbon emissions,
largely due to the absence of energy-efficient optimizations,
which are traditionally available in cloud data centers. Although
recent advancements in carbon-aware resource orchestration
propose shifting workloads to regions with lower carbon intensity,
these solutions assume globally distributed infrastructures, which
may not be the case for companies operating within a single
country. In this paper, we investigate the carbon and resource
cost implications of deploying microservice applications across
geographically distinct regions. Our findings reveal a trade-off
between carbon and cost efficiency that emphasizes the need
for intelligent, selective microservice migration within the cloud-
edge continuum. Future work will focus on developing CaRE,
a Carbon and Resource Efficient orchestrator for optimizing
workload placement, balancing sustainability, resource costs, and
performance across heterogeneous cloud-edge infrastructures.

I. INTRODUCTION

Recent advances in computing, such as microservices and
machine learning workloads, have driven demand for re-
sponsive computation near users, introducing the cloud-edge
continuum [1], [2]. This approach integrates cloud and edge re-
sources, with edge computing enabling application deployment
closer to end users to reduce latency and enhance real-time
performance [1], [3]–[5]. However, edge environments face
challenges, such as limited resources, device heterogeneity,
and unreliable networks, and require new workload manage-
ment approaches [6], [7]. Various resource orchestrators have
been developed to manage workloads across this continuum,
meeting QoS requirements, such as latency, throughput, and
availability, through advanced scheduling and resource allo-
cation techniques [1], [4], [6], [8], [9]. Many approaches
focus on resource-aware strategies that predict future resource
usage patterns to enhance resource utilization and system
performance, while minimizing resource waste [1], [10]–[16].
Furthermore, anomaly detection techniques further enhance
performance by identifying and addressing deviations from
normal system behavior [17]–[19].
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The importance of carbon. The expansion of edge computing
increases its environmental impact, as distributed edge data
centers consume significant energy and contribute to carbon
emissions. Unlike large cloud centers, smaller data centers
often lack energy-saving optimizations, like liquid or location-
based cooling, making carbon-conscious strategies essential.
Recent carbon-aware solutions [20]–[24], such as spatial and
temporal shifting, reduce emissions by adjusting workloads
based on the carbon intensity of electricity generation. Spatial
shifting moves tasks to regions with greener energy sources,
while temporal shifting delays non-urgent workloads until
energy grids are greener. These methods enable sustainable
cloud-edge operations without sacrificing performance.
Combining carbon and resource awareness. Existing
carbon-aware optimizations make the bold assumption that all
cloud-edge infrastructures span across many countries with
varying carbon intensity. This does not apply to national
companies whose infrastructure resides within one country.
To reduce their carbon footprint, such companies would need
to buy or rent resources in greener regions, to implement
spatial and temporal shifting. This approach increases costs
($) and resources deployment complexity, which may limit
the effectiveness of current orchestration solutions. Therefore,
carbon awareness does not necessarily result in resource
efficiency, as it raises deployment costs and resource needs.

In this paper, we provide preliminary experiments that cap-
ture the additional costs for existing microservice applications
to run in greener locations, where the total carbon emissions
are significantly decreased. Our observations show that the
costs of moving entire applications are not trivial, motivating
the need to have a novel cloud-edge resource orchestrator that
will make an intelligent selection of which microservices to be
migrated, to allow for reduced carbon emissions, high resource
efficiency and reduced operational costs, all at the same time.

II. PRELIMINARY RESULTS
As a motivational experiment, we assume that a company

deploys its entire cloud-edge infrastructure in Spain [25], a
country with a moderate carbon intensity of 206 grams of
CO2 equivalent per kilowatt-hour (gC02eq/kWh), utilizing
68% low-carbon and 48% renewable energy sources. Recent
works [20]–[23] suggest offloading workloads to ‘greener’
locations, such as Sweden [26], where carbon intensity is only



20 gC02eq/kWh, with 100% low-carbon and 71% renewable
energy sources. Our experiment aims to capture the difference
in the total carbon footprint and the cost ($) of deploying a
workload in these 2 countries, as well as the additional cost ($)
needed for moving the workload from Spain to Sweden.
Performance of microservice applications. We experiment
with microservices, using the DeathStarBench [27] bench-
mark, which exemplifies a complex application that could
be deployed in the cloud-edge continuum. In particular, we
deploy the social network application with 24 microservices,
where users send requests to compose posts. Also, we deploy
the media streaming application with 32 microservices that
implements a movie platform where users can log in and
upload movie reviews. Every application runs on a separate
node, with Kubernetes as a cluster manager and Prometheus
for monitoring. We deploy a workload that sends 1,000 re-
quests to each application at time steps that follow a Poisson
distribution, emulating multiple concurrent users for a duration
of 10 minutes, as also done in Sinan [28]. Table I summarizes
the performance results of the 2 different microservice applica-
tions. We report the average, P95 and P99 latency (as collected
by the Jaeger Tracing Platform [29]), as well as the storage
requirements for the containers and the memory footprint of
the workload. We observe that the media streaming application
has 2.89× higher average latency than the social network
one, while requiring less memory and similar storage capacity.
The performance difference arises because composing and
uploading a movie review is more computationally demanding
than creating a social media post.
Carbon footprint. Next, we capture the difference of running
the applications in the two distinct countries mentioned above.
Table II captures the total carbon emissions measured in
milligrams of CO2 equivalent (mgC02eq). To calculate this
number, we aggregate the total energy consumption during
the 10-minute duration of the workload, collected via the
Prometheus monitoring platform, and multiply it with the
country’s total carbon intensity, as suggested in [30]. We
observe that running the applications in Sweden, makes for a
much more environmentally sustainable solution. In particular,
there is an order of magnitude difference in carbon emissions,
which aligns with the difference in the carbon intensity of the
two countries, as mentioned in the beginning of this section.
Finally, we see that the media streaming application generates
more than 2× higher carbon emissions than the social network,
due to its longer latency, as reported in Table I. Thus, hosting
the media streaming application in Sweden will lead to a
higher impact in environmental sustainability.

Resource cost. To realize a greener deployment, a company
located in Spain needs to expand its infrastructure with ad-
ditional resources in Sweden, leading to additional resource
costs. To quantify those, we use the Amazon EC2 On-Demand
Pricing [31] and consider the t3.large instance with 8GB
of memory and 2 CPU cores for the social network appli-
cation and the t3.medium instance with 4GB of memory
and 2 CPU cores for the media streaming application, to

Application AVG Lat P95/P99 Lat Storage Memory
SocialNet 9.49 ms 42.12/89.16 ms 0.85 GB 5.15 GB

MediaStream 26.08 ms 70.65/127.52 ms 0.75 GB 3.71 GB
TABLE I: Application performance regardless of location.

App(Location) Carbon (mgCO2eq) Local($/hr) + Move ($)
SocialNet(ES) 72.72 0.0912 + 0.02

SocialNet(SWE) 7.06 0.0864 + 0.02
MediaStream(ES) 166.17 0.0456 + 0.02

MediaStream(SWE) 16.13 0.0432 + 0.02

TABLE II: Comparison of carbon and local operational cost
per location, plus the cost of moving the app from ES to SWE.

accommodate the difference in memory footprint, as shown
in Table I. Table II reports the on-demand hourly rate in the
eu-south-2 region for Spain vs. the eu-north-1 region
for Sweden. In addition, we calculate the cost of moving the
entire application from Spain to Sweden by multiplying the
storage size with the data transfer cost per GB from Spain to
Sweden in AWS [31]. We observe, that deploying both appli-
cations in Sweden requires a cost similar to deploying them
in Spain. Thus, if an application is moved within Europe, then
double the budget is needed to acquire similar infrastructure
in a different country, because the application needs to run on
both locations, as users that are in Spain will always need to
connect first to the closest datacenter. Also, there is additional
cost associated for the actual migration, which is proportional
to the application’s storage needs. Finally, we see that the cost
for deploying the media streaming application in Sweden is
half of that of the social network one.

III. SUMMARY AND FUTURE WORK

The experiment above indicates significant cost associated
with expanding a cloud-edge infrastructure across countries to
make for an environmentally sustainable deployment. Moving
the entire microservice application to a greener location,
although significantly reduces the overall carbon footprint,
comes with substantial operational and migration costs. Our
preliminary results show that the application performance
and resource needs directly influence the amount of resource
costs of infrastructure expansion and the level of carbon
emission reduction. Therefore, there needs to be a more clever
deployment of part of the microservices in greener locations,
in a way that strikes a balance across carbon and resource
efficiency, while minimizing infrastructure expansion cost ($).

Future work will design and build CaREful (Carbon and Re-
source Efficient) resource orchestration, that minimizes the ad-
ditional costs associated with expanding operations to greener
locations. This novel resource orchestrator for the cloud-
edge continuum will selectively and dynamically migrate sub-
groups of microservices across applications to locations with
lower carbon intensity, leveraging new carbon-aware solutions
on spatial and temporal shifting and novel resource-aware
solutions that accurately predict future resource usage and
detect anomalous workload behaviors. This is a particularly
challenging problem given the heterogeneity of the cloud-
edge resources, the diversity of the microservice applications
and the multi-objective problem of optimizing alongside both
carbon, resource and cost efficiency.
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