
Benchmarking an EDGELESS Cluster for
Serverless Edge Computing Applications

Claudio Cicconetti
Institute of Informatics and Telematics, National Research Council – Pisa, Italy

c.cicconetti@iit.cnr.it

Abstract—The EDGELESS project is set to efficiently oper-
ate serverless computing in extremely diverse computing en-
vironments, from resource-constrained edge devices to highly-
virtualised cloud platforms. Automatic deployment and reconfig-
uration will leverage AI/ML techniques, resulting in a flexible
horizontally-scalable computation solution able to fully use het-
erogeneous edge resources while preserving vertical integration
with the cloud and the benefits of serverless and its com-
panion programming model, i.e., Function-as-a-Service (FaaS).
The system under design will be environmentally sustainable,
as it will dynamically concentrate resources physically (e.g., by
temporarily switching off far-edge devices) or logically (e.g., by
dispatching tasks towards a specific set of nodes) at the expense of
performance-tolerant applications. Evaluating the performance
of such a complex system in realistic conditions is a daunting
task. In the paper, we provide an overview of the ongoing efforts
to achieve this goal.

Index Terms—Stateful FaaS, Serverless Computing

I. INTRODUCTION

EDGELESS is a collaborative project funded by the Eu-
ropean Commission under the Horizon Europe program that
aims to leverage the serverless concept [1] in all the layers in
the edge-cloud continuum to fully benefit from diverse and
decentralised computational resources available on demand
close to where data are produced or consumed. In particular,
we aim at realising an efficient and transparent horizontal
pooling of the resources on edge nodes with constrained
capabilities or specialised hardware, smoothly integrated with
cloud resources, which is a giant leap forward compared to
state-of-the-art vertical offloading solutions where the edge is
a mere supplement of the cloud.

Benchmarking plays a vital role in understanding the effec-
tiveness of the solutions developed in such a new and complex
system. However, assessing the performance of edge comput-
ing systems, in general, is known to be a difficult task, due
to the lack of significant datasets [2]. While in the literature
some tools have been proposed, even in the specific case
of serverless computing [3]–[6], these solutions are tailored
to specific aspects that do not fit the distinguishing features
of EDGELESS, including the stateful nature of functions, its
flexible deployment across the edge-cloud continuum, and the
use of lightweight virtualisation abstractions (instead of con-
tainers, which are far more common). Therefore, in the project,
we developed a framework, called edgeless_benchmark
that is designed specifically to assess the performance of an
EDGELESS cluster in relevant conditions.
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Fig. 1. EDGELESS benchmark test application.

In Section II we briefly introduce the project architecture. In
Section III we introduce the local observability means, which
are used in benchmarks to measure performance. In Section IV
we describe some relevant features of the benchmarking
framework.

II. ARCHITECTURE

The EDGELESS architecture is illustrated with the help of
the example deployment in Figure 1 and has been designed
to support broad deployment scenarios involving edge and
cloud computing infrastructures. The deployment spans two
clusters, one of which shows its internal structure consisting
of three orchestration domains. Two of those domains are
mapped to physically (and possibly geographically) separated
edge computing infrastructures, while the third uses virtual
resources offered by a third-party cloud provider under an
Infrastructure as a Service (IaaS) model. The cloud operators
used by the clusters can be different. Each orchestration
domain, at the edge or in the cloud, is managed by an ε-ORC,
but the worker nodes are different between these two cases. At



the edge, the physical resources available are limited by the
type, capacity, and number of nodes installed at a given site
(nodes may range from embedded devices to small computers
to full-fledged servers), while nodes in the cloud run inside
a highly virtualised environment, using containers or virtual
machines.

III. OBSERVABILITY

The local observability metrics in EDGELESS are collected
by each node and transferred to the ε-ORC in response to
periodic keep-alive polls. The keep-alive response message
consists of two parts. First, the node’s health status infor-
mation, including system information about the edge node,
like CPU average load, memory occupation, and network
transfers. Second, the performance samples are obtained by
the node’s telemetry system and include the running times of
all the function invocations. Furthermore, it is possible to have
application-specific metrics, which are triggered from within
the functions by using a dedicated Application Programming
Interface (API) made available to the developers.

IV. BENCHMARKING

edgeless_benchmark is a tool to help function de-
velopers and designers of orchestration algorithms through
the automated performance evaluation of a population of
workflows in controlled conditions.

Arrival models supported:
• poisson: inter-arrival between consecutive workflows and

lifetimes are exponentially distributed.
• incremental: one new workflow arrives every new inter-

arrival time, with constant lifetime.
• incr-and-keep: add workflows, with constant lifetimes,

incrementally until the warm up period finishes, then keep
until the end of the experiment.

• single: add a single workflow that lasts for the entire
experiment.

• trace: read the arrival and end times of workflows from
a file specified.

Workflow types supported:
• single: a single function.
• matrix-mul-chain: a chain of functions, each performing

the multiplication of two matrices of 32-bit floating point
random numbers at each invocation.

• vector-mul-chain: a chain of functions, each performing
the multiplication of an internal random matrix of 32-bit
floating point numbers by the input vector received from
the caller.

• map-reduce: a workflow consisting of a random number
of stages, where each stage is composed of a random
number of processing blocks. Before going to the next
stage, the output from all the processing blocks in the
stage before must be received.

The duration of the experiment is configurable via a
command-line option, like the seed used to generate pseudo-
random numbers to enable repeatable experiments and the
duration of a warm-up period.
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Fig. 2. EDGELESS benchmark example results.

The benchmark allows obtaining results like those in Fig-
ure 2, which were obtained in a cluster of 5 edge nodes: 4
with fewer computing capabilities (node#0 to node#3) and
1 more powerful (node#4). We used a Poisson arrival time,
with average interarrival varying from 10 to 60 seconds. Each
experiment lasted 1 hour and was repeated 10 times. We ran
separately experiments with two orchestration policies:

• Random: function instances are assigned to nodes in a
weighted random manner, with the weight proportional
to the number of cores of each node.

• RoundRobin: function instances are assigned in a round-
robin manner, without considering the nodes’ capabilities.

As can be seen, with RoundRobin node#4 is under-utilised
because it is assigned the same amount of computational
burden as the others, which are less capable. On the other
hand, Random yields a more balanced allocation of resources,
by exploiting knowledge about the nodes’ capabilities, which
is advertised to the ε-ORC by the nodes upon registering to
the orchestration domain.
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