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Abstract—Modern distributed applications are characterized
by high complexity as well as strict quality of service re-
quirements. Such applications consist of several components
that communicate with each other to perform several tasks
and often exploit edge computing to achieve improved perfor-
mance compared to communicating with the cloud. Numerous
real-world edge computing scenarios require operation across
heterogeneous nodes, with the need to satisfy both application-
and system-level constraints while supporting node mobility. In
this demo, we introduce a framework for dynamic and adaptive
management of distributed applications and systems spanning
the mobile-edge-cloud continuum. To demonstrate the flexibil-
ity of our framework, we showcase a smart agriculture scenario
including a tractor and a drone as mobile nodes to support
efficient characterization and treatment of field properties.

1. Introduction

Distributed applications have gained widespread adop-
tion due to their ability to handle complex and resource-
intensive tasks across different environments. It is com-
mon for such applications to comprise of several microser-
vices, thus significantly affecting the operation of cloud
data centers by accelerating scalability and increasing cost-
efficiency. An increasing number of modern workloads are
container-based, allowing effortless deployment and migra-
tion. Furthermore, a plethora of applications are no longer
restricted to the cloud but also involve mobile IoT devices,
such as smartphones and vehicles like cars or even drones. In
this case, edge computing can improve application Quality
of Service (QoS) by moving computations closer to the
points where data is produced while leading to better overall
system performance and stability, as it reduces data traffic
and resource pressure to the cloud. To effectively harness
the potential of edge computing, it is important to support
flexible and adaptive deployment and orchestration of such
applications so that edge resource usage adapts to the dy-
namically changing position of the mobile nodes.

In this demo, we showcase a framework that enables
flexible application deployment and orchestration across the
entire system continuum. We support modular applications
where the developer merely provides the individual compo-
nents as containers and annotates them with their resource,
deployment, and interaction requirements. Based on this

information, our framework deploys the application com-
ponents on a suitable cluster, comprising cloud, edge, and
mobile IoT nodes, and adapts this deployment at runtime
without any intervention from the application owner or
system administrator.

2. Design & Implementation

2.1. Conceptual Architecture

Our framework comprises a hierarchical multi-agent
system which interacts with two other basic subsystems:
Container Orchestration and Telemetry. The agent hierarchy
follows the orchestration architecture, which is logically
organized into the Continuum, Cluster, and Node layers.
Communication between the three subsystems (agents, con-
tainer orchestration, and telemetry) is performed through
appropriate interfaces at every layer. All three subsystems
have internal communication across different levels, while
the agent communicates with the system Actors at the
continuum-level. The node agent employs a controller to
execute the commands for low-level configuration knobs.
Our framework accomplishes the management by using the
available telemetry data that is emitted from every layer to
get the necessary insights. This design enables the usage of
different approaches (potentially ML-based) to augment the
framework’s decision-making process to achieve the goals
of the application and the system. The overall status and
results of the decisions are communicated to system Actors.

2.2. Implementation

For the continuum- and cluster-level orchestration, we
leverage Karmada [1] and Kubernetes [2] respectively. In ad-
dition, we use OpenTelemetry [3] as the telemetry collection
and transmission mechanism across the different layers of
the continuum. The multi-agent system is implemented with
the SPADE framework [4], capturing continuum, cluster, and
node agents. System information and application status are
stored and updated using Redis [5] data structures. More-
over, we provide a CLI allowing users to deploy, remove,
and monitor applications.



3. Smart Agriculture Use Case

3.1. Application description

The application focuses on the characterization and lo-
calization of field properties and the targeted application of
products, using a system that consists of a device mounted
on a tractor and a drone overflying the field. The key
objective of the application is to achieve very high accuracy
regarding the characterization of field properties, both in
terms of quantification and localization. This information
is then used to control, in real-time, a product application
device on the tractor, to release the right amount of product
on top of relevant positions, as the tractor moves above the
area. Increased accuracy leads to operation efficacy, reduced
usage of products, and cost savings for the farmer.

Both the tractor-mounted device and the drone are
equipped with cameras and GPS. The device on the tractor
features additional sensors. The data provided by these
sensors, including the video/images from the cameras, are
processed on board to detect and localize field properties in
the parts of the field in front of the tractor. The drone plays
the role of an optional, assistive subsystem, used to increase
the accuracy of field characterization and localization. It
can be used to produce such information before the tractor
starts moving in the field or operate in tandem with the
tractor to generate live information at runtime. The software
component pipelines on the two nodes work synergistically:
the drone sends properties of the scanned areas to the
localization module of the on-tractor system.

3.2. Instantiation of our Framework

Figure 1 depicts our framework’s instantiation for the
use case to be demonstrated. The system infrastructure
consists of four nodes, represented as Virtual Machines
(VMs), connected through a VPN. Two nodes host the
Continuum and the Cluster Agents respectively, operating on
top of Karmada and Kubernetes based on their management
layer. The two worker nodes implement the tractor and the
drone respectively, with simulated mobility. To be able to
perform effortless testing and validation of our framework
before deploying it on the field, we simulate node mobility
in a lab environment, having (virtual) mobile nodes that
run the Software-In-The-Loop (SITL) configuration of the
Ardupilot autopilot [6]. The system and application software
on the mobile nodes, in our case a drone and a tractor, com-
municates with the respective autopilot using the MAVLink
protocol [7] via the MAVProxy library [8] and the DroneKit
software [9]. Finally, we use Mission Planner [10] and a
Grafana dashboard [11] for the visualization of telemetry
data related to node mobility and application performance
respectively.

We use an application that mimics the behavior of the
smart agriculture use case application and consists of three
components: (i) the field analysis component for the tractor,
(ii) the field analysis component for the drone, and (ii)
the drone driver/controller. For practical reasons, the drone
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Figure 1. Framework instantiation for the smart agriculture use case.

controller is pre-installed on the drone node. Thus, the appli-
cation components that are managed by our framework are
the two field analysis components. The tractor component
receives the data generated by the drone component, and
considers this extra information to improve field analysis.
It also sends tractor position/speed information to the drone
controller. Both field analysis components emit application
performance metrics via telemetry. The drone controller
component emits state information via telemetry, based on
whether the drone is ready to operate, is following the
tractor or is returning to land (when explicitly disengaged
or running out of battery).

In this demo scenario, our framework is responsible
for monitoring the status of the worker nodes as well as
application-related metrics via telemetry and for adapting
the orchestration using two basic (re)configuration actions:
(i) start/stop the drone operation based on the time windows
which are estimated to be beneficial for the application with-
out wasting drone’s energy (batteries) using a simple heuris-
tic approach, and (ii) deploy/remove the drone component
when the drone is following the tractor/returning to its home
location, respectively. Notably, the heuristic approach could
be replaced by alternative (potentially machine learning-
based) methods to predict the application performance and
adapt accordingly.
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