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« Agentic Al is an artificial intelligence system that can accomplish a specific
goal with limited supervision.

* |t consists of Al agents

 machine learning models that mimic human decision-making to solve
problems in real time.

* In a multiagent system, each agent can perform a specific subtask required
to reach the goal and their efforts are coordinated through Al orchestration
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https://www.ibm.com/think/artificial-intelligence?
https://www.ibm.com/think/topics/ai-orchestration

Agentic Al: How do they do 1t?

Agentic Al systems can percelve, decide, and act to accomplish goals with
minimal human intervention.

Perception Decision Action

Key shift vs. traditional Al: closed-loop autonomy
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« Autonomy: self-governing decision making

« Reactivity: timely response to environmental changes

« Proactivity: takes initiative to pursue goals

« Goal-oriented behavior: plan » execute > monitor » adapt

« Social ability: coommunicate, coordinate, negotiate
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Autonomous agents: architectural styles

4 2
Reactive Direct perception » action, minimal state (fast)

~ J

4 2
Deliberative Internal state + planning to reach goals

~ J

4 2
Hybrid Layered reactive + deliberative control

~ J
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Elements of an Agentic Al as a multi-agent system

Coordination: multiple agents work toward common ° @
or individual goals

icati iati ' : Orchestrat
Communication & negotiation: share information, renestrator

allocate tasks, resolve conflicts

Emergent behavior: system-level patterns from local e G
interactions @

Distributed Al: decentralized control + local rules
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Moving Agentic Al @ the edge...

Considering:

R T e

Limited compute capability Intermittent connectivity

Locality: fragmented

Lack of coordination .
local views
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RQ: How do agents share and improve their
INternal models without a central coordinator?




Decentralized federated learning
(as a coordination free learning layer)
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from this to this
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THE PAST THE PRESENT
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- Privacy preservation

- Data security

- Collaboration without data sharing
- Efficient data utilization

- Reduced communication costs

- Increased scalability
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Still, you need the central server to
orchestrate the learning process

« Communication overhead
Network dependency
« Centralized control and governance
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Let's get rid of the central controller, then!

A l A
— . | .
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A ‘A
THE FUTURE
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Challenges of fully decentralized learning

- Peer-to-Peer Communication » how information flows becomes critical

for learning, which is a by-product of the graph topology connecting
nodes
[Palmieri et al., 2024] [Palmieri et al., 2023]

- Data localization » data partitioned across devices, usually in a non-IID
way, issues of small data
[Ahmad et al., 2025]

b
b

alete N © o - Resilignce of collaborative learning » issues of trust, low-quality data,
° > malicious nodes

L ]
A A A
v

ﬂ
i

[Sabella et al., 2025]

— - No centralized control » |ack of coordination
. .: [Valerio et al., 2023] [Badie-Modiri et al., 2024]

- On-device learning » address the resource constraints
[Valerio et al., 2022]

- Local decision making » device and model heterogeneity, local
resources limited
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Research direction #1:

What is the effect of different network
topologies on the accuracy of decentralized
learning?

ML4ECS26 ‘ \
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Why it I1s a crucial problem

Barabasi—Albert graph

Stochastic Block Model

Poorly connected nodes

Communities that are well
connected inside and poorly
connected outside

Nodes much more
“important” than others

Erd6s—Rényi graph
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« Data allocation

o 10 MNIST classes divided into

- PR

o All nodes receive an equal share (selected randomly) of data from
Gl.

o Data from G2 are allocated only to

the 10% vs lowest-degree nodes
“a gee o7
?‘ﬁ}%\;\%
. were considered (all with 100 nodes):

o Erdds—Rényi, Barabasi-Albert, Stochastic block model
Model aggregation strategy: simple
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Main results

« the initial data distribution on high vs low-degree nodes plays a key role

when low-degree nodes have more knowledge, knowledge spreads better when the

network is less connected
o connectivity dilutes knowledge in average-based dec learning

p = 0.05, edge-focused

p = 0.03, edge-focused p = 0.046, edge-focused
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Palmieri, L, Boldrini, C., Valerio, L., Passarella, A., & Conti, M. (2024). Impact of
network topology on the performance of Decentralized Federated Learning.

Computer Networks 2024.
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Main results

« the initial data distribution on high vs low-degree nodes plays a key role

when users are grouped in tightly knit communities, it is very difficult for knowledge
to circulate outside of the community

Mean accuracy community 2
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network topology on the performance of Decentralized Federated Learning.
Computer Networks 2024.
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"

Betweenness centrality > How much the node bridges together distant
part of the network

N Degree centrality > How much connections does the node have

« Clustering coefficient > How much the node is influential within its W
neighbors
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Selection metric counts too

Information flows better when more data is given to nodes that are globally more influencial.

Highest-focus

Degree (Global) Clustering coefficient (Local)
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Orange curves: nodes with more data
Blue curves: all the other nodes in the network
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Research direction #2;
Enhancing local Al models through
decentralized collaboration
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Aggregation is not easy w/o coordination

Why the drop? It's the lack of
= coordination

1.00

o
=4
2]

Accuracy

« each node has a different initialization
e blsrarans of the local (e.g., MLP) model

federated

e
n
o

0.25

« due to the permutation invariance of
0 5 10 15 the hidden layers of the neural network,
Communication rounds . . .
coordinate-wise averaging can be
The accuracy drops instead of detrimental without a common
increasing! initialization

« Non-IlID data worsen this effect
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Our solution #1: mitigation

Heterogeneity-aware aggregation function (DecDiff)
Aggregate Intuition: give less importance to models that are very
different from yours

Boost the learning with a virtual teacher
Intuition: introduces a regularization element
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Aggregation strategy: beyond Decentralised Federated Average

Aggregate
(=1 _ &1
W. — W,
. t -1
. DecDiff W =Wl e
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Valerio, L., Boldrini, C., Passarella, A, Kertész, J., Karsai, M., & Ifiguez, G. (2023).
28 Qapgdiastign-free Decentralised Federated Learning on Complex Networks:

Overcoming Heterogeneity. arXiv preprint arXiv:2312.04504.




Local training: Based on distillation

 Standard distillation
« A student network tries to mimic a Teacher network

« Basic assumptions on the Teacher network
* Larger and more capable network
« Trained on more data

l

Distillation Loss

Valerio, L., Boldrini, C., Passarella, A, Kertész, J., Karsai, M., & Iniguez, G. (2023).

ML4ECS26 Coordination-free Decentralised Federated Learning on Complex Networks:
Overcoming Heterogeneity. arXiv preprint arXiv:2312.04504-.




Local training: Based on distillation

* |In decentralised settings:

- All devices are both teachers
and students

 ——
* Trained on local (small data) 1

. Potential Issues: computational _ 1 Distillation Loss
bottleneck for devices — I

e Solution: Self-distillation

« Replace Teacher network with a
virtual teacher

Valerio, L., Boldrini, C,, Passarella, A., Kertész, J., Karsai, M., & Iniguez, G. (2023).
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Results

 Our DFL vs FL: close performance

® @
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nccuracy ova) con i JRRGAL TS
’.
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We & 20 ®
Federated 0.896 0.00204 S 2 @
® m© )
DecDiff + Virtual Teacher 0.894 0.00206 @@ ) ®
@
DecDiff 0.887 0.00463 ®
DecAvg 0.886 0.00173
SOTA benchmark #1 0.859 0.0033
SOTA benchmark #2 0.859 0.0118
No cooperation 0.769 0.0396

Valerio, L., Boldrini, C., Passarella, A., Kertész, J., Karsai, M., & Iniguez, C. (2023).
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Results
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Our solution #2: acceleration

The loss decreases very slowly

a)_ \

ceie e . 1 — Proposed method
« Standard model initialization (He et al. 2015) - Hor?mogeneous
i . 5 - = He et al. (2015)
« weights of layer [ ~ Gaussian(O, o9
0
O
* |In decentralized, uncoordinated settings, it *g,-)' 100 -
results in progressively poorer performance F
as the number n of nodes grows
 We propose a novel initialization with gain o 10'00 zo'oo 30'00 40'00
correction Communication rounds t

Badie-Modiri, A., Boldrini, C., Valerio, L, Kertész, J., & Karsai, M. (2025). Initialisation and

ML4ECS26 Topology Effects in Decentralised Federated Learning. Springer Applied Network Science.
arXiv preprint arXiv:2403.15855.




Our solution #2: acceleration

* HOW: Use 0t IVgreaqyll™, Where [IVgeaqyll is the £,-norm of the steady-state
eigenvector (corresponding to eigenvalue 1) of the Markov matrix A associated
with the communication graph G, normalized to have unit sum

a) It works better than std init
) — Proposed method even with large estimation
- Homogeneous errors!
— = He etal. (2015) (b)
n
n
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Badie-Modiri, A, Boldrini, C., Valerio, L, Kertész, J., & Karsai, M. (2024). Initialisation and

ML4ECS26 Topology Effects in Decentralised Federated Learning. R1 under review at Applied Network
Science. arXiv preprint arXiv:2403.15855.




Research direction #4:
Resilience of decentralized learning
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Resilience to data and node loss

 The most central nodes disappear from the network
 They have data vs they don't have data (IID vs non-I1D)
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(a) (b)

Palmieri, L., Boldrini, C, Valerio, L, Passarella, A, Conti, M., & Kertész, J. (2025).

ML4ECS26  Robustness of decentralised learning to nodes and data disruption. Computer
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Experimental settings: selection of cut off nodes

How do we disrupt: switch off nodes
according to their centrality score

.

. ‘i,

o
AN /e
e\ =N 7"1‘
oy

IR TS
X\

Centrality score: Structural holes score (SH)

. . Initial After disruption
We remove top 10% of nodes with highest SH

Palmieri, L., Boldrini, C, Valerio, L, Passarella, A, Conti, M., & Kertész, J. (2025).

ML4ECS26  Robustness of decentralised learning to nodes and data disruption. Computer
Communications, 2025.




Disruption analysis

Casel Case 2

How: Highly central nodes have no data How: central nodes have data

assigned

Central nodes role: connectivity only Central nodes role: connectivity + training

Disruptions happens through time: the t=0, t=2 and t=10

N

10% accuracy curve 50% accuracy curve

Palmieri, L., Boldrini, C, Valerio, L, Passarella, A, Conti, M., & Kertész, J. (2025).
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Case 1. connectivity drops

The mean overall accuracy does not change much with

respect to the baseline

DFL is robust

—_— N
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Palmieri, L., Boldrini, C, Valerio, L, Passarella, A, Conti, M., & Kertész, J. (2025).

ML4ECS26  Robustness of decentralised learning to nodes and data disruption. Computer
Communications, 2025.




What happens to isolated nodes? Case 1vs Case 2

Knowledge Mean accuracy of the isolated nodes is directly proportional
persists to the accuracy threshold
Mean accuracy isolated nodes Mean accuracy isolated nodes
Casel Case 2
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0
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Palmieri, L., Boldrini, C, Valerio, L, Passarella, A, Conti, M., & Kertész, J. (2025).
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The mean accuracy difference from the baseline is similar between Case 1 and Case 2

Mean accuracy over all surviving nodes Mean accuracy over all surviving nodes
DFL can tolerate Case 1 Case 2
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Concluding

Key findings

« Knowledge acquired before disruption persists, and is not lost even by
Isolated nodes

« Accuracy can be recovered if data is present “somewhere” in the network

« Even modest connectivity supports efficient recovery from failures

Decentralized learning is robust to all types of disruption

Palmieri, L., Boldrini, C, Valerio, L, Passarella, A, Conti, M., & Kertész, J. (2025).
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Resilience to low-quality data

. RQI: How sensitive is average-based decentralized federated learning to low-
quality or corrupted data~

- RQ2: To what extent is this sensitivity influenced by the underlying network
topology”

Sabella, S., Boldrini, C,, Valerio, L., Passarella, A., & Conti, M. (2025). The Built-In
Rolywtness afi DeEergradized Federated Averaging to Bad Data. IJCNN 2025

arXiv:i2502.18097.



Resilience to low-quality data

« Low-quality data (i.e., 9s look like 4s, but labelled as 9)

Hub local dataset
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Sabella, S., Boldrini, C, Valerio, L., Passarella, A., & Conti, M. (2025). The Built-In

Robustness of Decentralized Federated Averaging to Bad Data. IJCNN 2025
arXiv:2502.18097.
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Settings: how bad data is distributed

DFL balanced FL balanced
a. |_l b. |__I. |__L
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lia ® Class 9 Samples without coruption

* 9
lia N5
*9 xQ o— \ ® Class 9 Samples with coruption
i) »n

* Q 4 ‘__I. " Other classes with uniform data
5 | 9 distribution

4 FL unbalanced

*9 S .
DFL unbalanced "° 2ﬁk L. 0/7/\\ ° e
3

Sabella, S., Boldrini, C, Valerio, L., Passarella, A., & Conti, M. (2025). The Built-In
ML4ECS26 Robustness of Decentralized Federated Averaging to Bad Data. IJCNN 2025
arXiv:2502.18097.




Impact of corruption: Centralized VS DFL

fl class "4"
1.0
0.8
0.6
0 200 400
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0.4

f1 class "9"
0 200 400
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0.95;
0.901

0.85%,
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200 400

— DFLp=0.7 == DFL p=0.9

Fraction of bad samples

Sabella, S., Boldrini, C, Valerio, L., Passarella, A., & Conti, M. (2025). The Built-In

ML4ECS26 Robustness of Decentralized Federated Averaging to Bad Data. IJCNN 2025
arXiv:2502.18097.




Impact of corruption: Balanced corruption - DFL vs FL

.0 f1l class "4" 10 f1 class "9" accuracy
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No differencel

Sabella, S., Boldrini, C, Valerio, L., Passarella, A., & Conti, M. (2025). The Built-In
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Impact of corruption: Unbalanced corruption - DFL vs FL

1.0 fl class "4" 5 fl class "9" accuracy
' /———' ' i e = K sieba -
0.9 B e 0.95 /
0.8 - 0.90-
0.7 0.0. 0.85;
0 200 400 0 200 400 0 200 400

— DFL p=0.1 == DFL p=0.5 === DFL p=0.9
FL p=0.1 FL p=0.5 FLp=0.9 = Centr.

FL less susceptible Both show robustness

Sabella, S., Boldrini, C, Valerio, L., Passarella, A., & Conti, M. (2025). The Built-In
ML4ECS26 Robustness of Decentralized Federated Averaging to Bad Data. IJCNN 2025

arXiv:2502.18097.
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« Corruption can hide in accuracy
« overall accuracy stays fairly stable

« Spread beats spike
« the same bad-data budget is far more damaging when dispersed across
many nhodes
« Coordination helps resilience:

- federated (server-based) learning shows better long-run robustness to
corruption than fully decentralized learning.
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What's left & What's next?
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 We covered:
* Impact of network topology
« Cope with data and models’ heterogeneity

 Resilience to bad data/low quality data
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« Resource limitations, i.e. quite crucial at the edge
« Model reduction (pruning/quantization/...)
« Alternative models, e.g., neuromorphic models and hardware

« Go beyond correlations and introduce collaborative causality
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« Adaptation to continuously changing environments
« Continual learning
« Unlearning, i.e, selectively forget concepts.

e Security and privacy:

« Go beyond resilience and explore over attacks to agents in decentralized
and collaborative environment

ML4ECS26
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