

Decentralized Federated Learning Over Edge Networks: a Coordination-Free Learning Substrate for Agentic AI

Lorenzo Valerio, PhD
CNR-IIT
lorenzo.valerio@iit.cnr.it

What is agentic AI: Definition

- Agentic AI is an **artificial intelligence system** that can accomplish a **specific goal** with **limited supervision**.
- It **consists** of **AI agents**
 - machine learning models that mimic human decision-making to solve problems in real time.
- In a **multiagent system**, each agent can perform a **specific subtask** required to reach the goal and their efforts are coordinated through AI orchestration

Agentic AI: How do they do it?

Agentic AI systems can **perceive**, **decide**, and **act** to accomplish goals with minimal human intervention.

Key shift vs. traditional AI: closed-loop autonomy

Autonomous agents: characteristics

- **Autonomy**: self-governing decision making
- **Reactivity**: timely response to environmental changes
- **Proactivity**: takes initiative to pursue goals
- **Goal-oriented behavior**: plan → execute → monitor → adapt
- **Social ability**: communicate, coordinate, negotiate

Autonomous agents: architectural styles

Reactive

Direct perception → action, minimal state (fast)

Deliberative

Internal state + planning to reach goals

Hybrid

Layered reactive + deliberative control

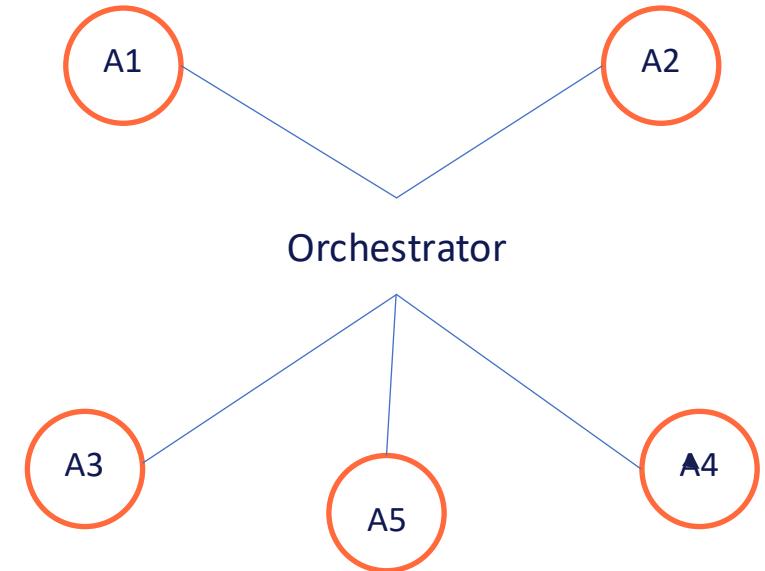
Elements of an Agentic AI as a multi-agent system

Coordination: multiple agents work toward common or individual goals

Communication & negotiation: share information, allocate tasks, resolve conflicts

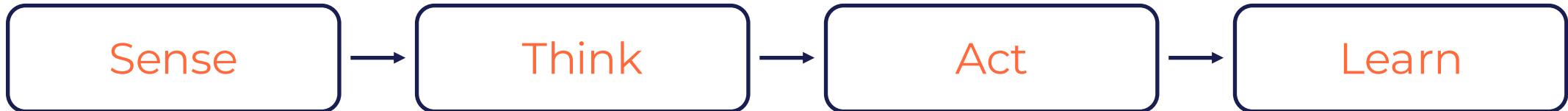
Emergent behavior: system-level patterns from local interactions

Distributed AI: decentralized control + local rules



Moving Agentic AI @ the edge...

Considering:



Limited **compute** capability

Lack of coordination

Intermittent **connectivity**

Locality: fragmented local views

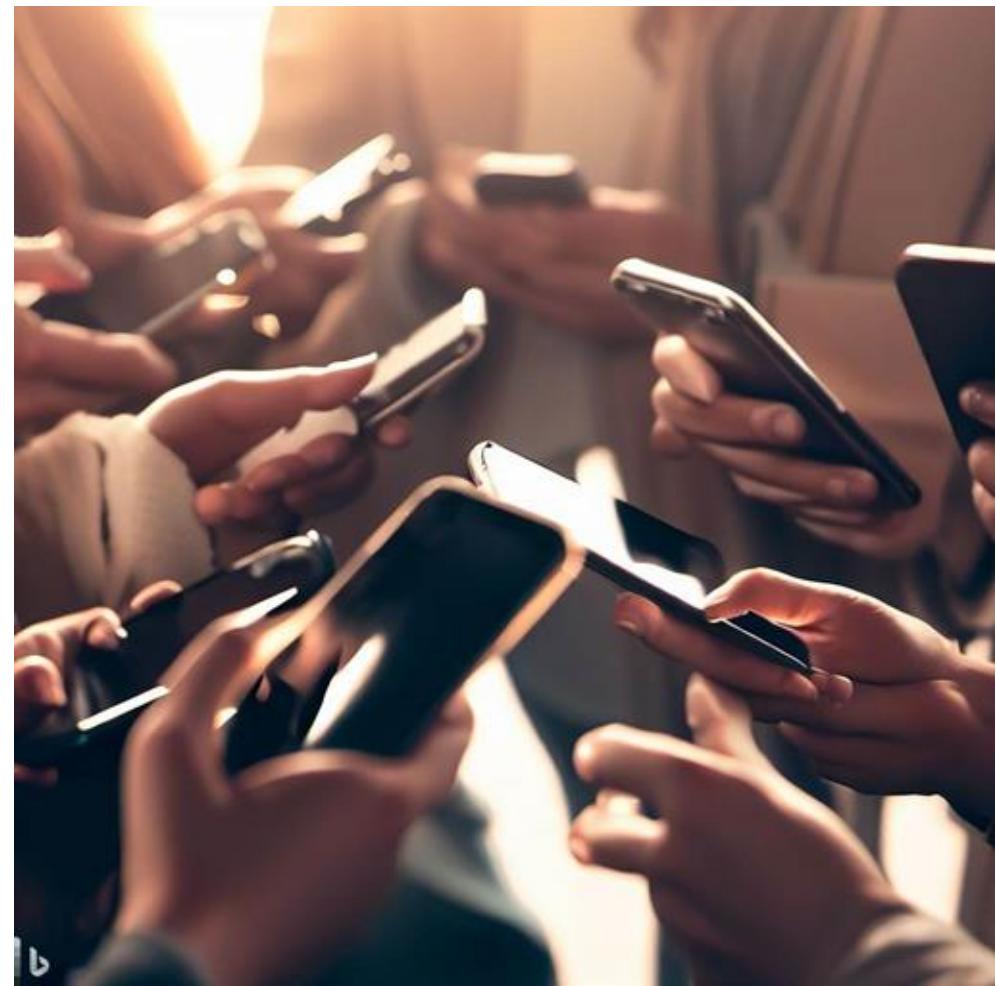
RQ: How do agents share and improve their internal models without a central coordinator?

Decentralized federated learning (as a coordination free learning layer)

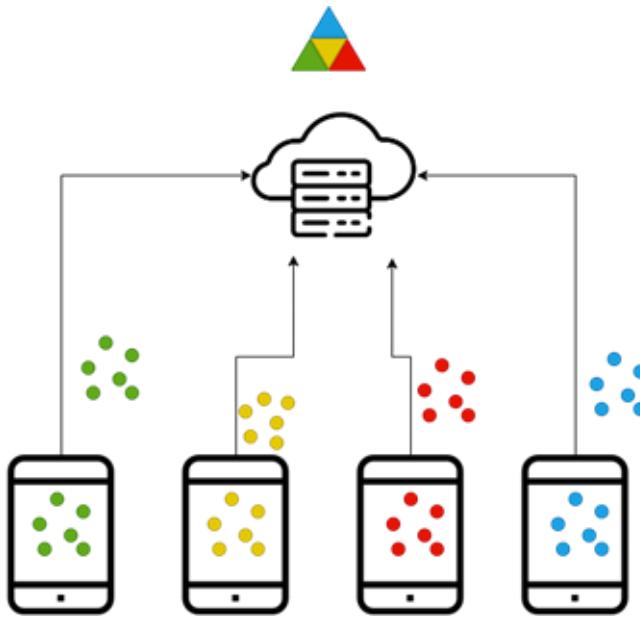
The **goal of DFL @ the edge** is to go...

from this

to this



AI network architectures



THE PAST

THE PRESENT

Benefits of federated learning

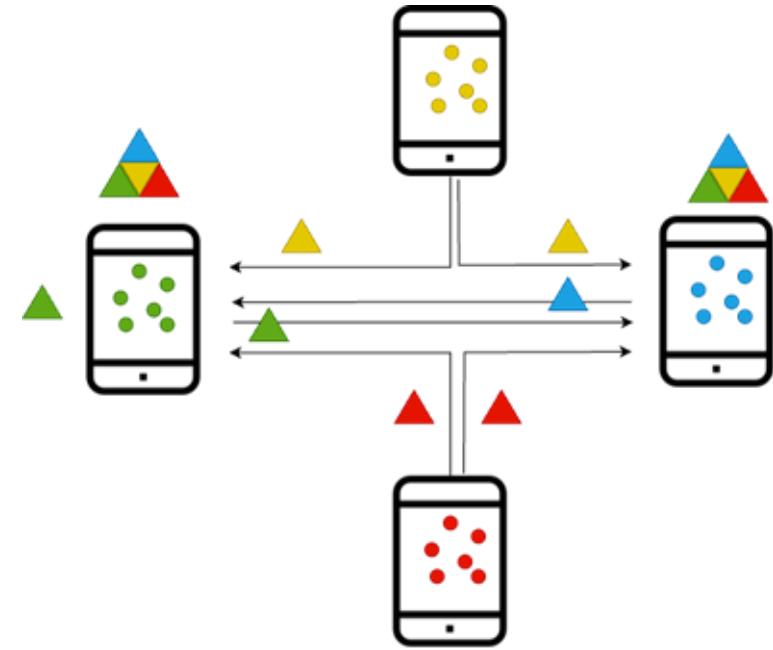
- **Privacy preservation**
- **Data security**
- **Collaboration without data sharing**
- Efficient data utilization
- Reduced communication costs
- Increased scalability

Still, you need the central server to orchestrate the learning process

- Communication overhead
- Network dependency
- Centralized control and governance

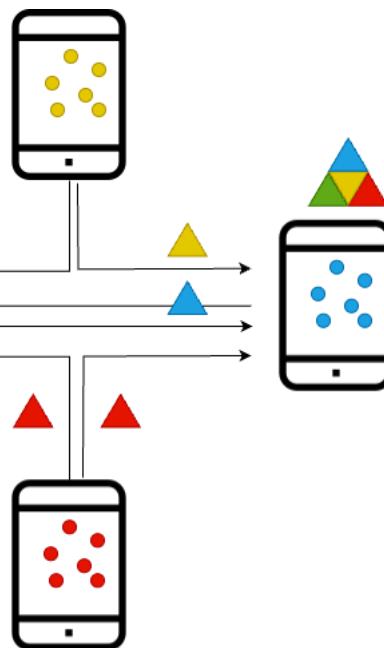
Fully decentralized learning

Let's get rid of the central controller, then!



THE FUTURE

Challenges of fully decentralized learning

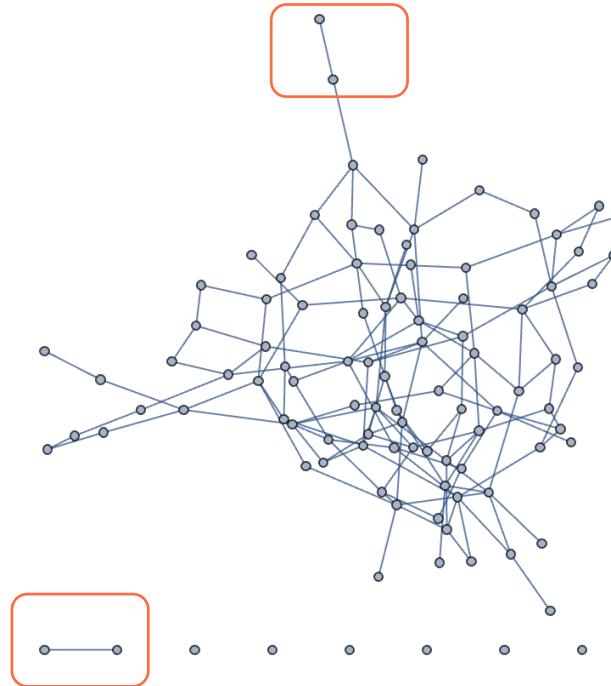


- **Peer-to-Peer Communication** → how information flows becomes critical for learning, which is a by-product of the **graph topology** connecting nodes
[Palmieri et al., 2024] [Palmieri et al., 2023]
- **Data localization** → data partitioned across devices, usually in a **non-IID** way, issues of small data
[Ahmad et al., 2025]
- **Resilience of collaborative learning** → issues of **trust**, low-quality data, malicious nodes
[Sabella et al., 2025]
- **No centralized control** → lack of **coordination**
[Valerio et al., 2023] [Badie-Modiri et al., 2024]
- **On-device learning** → address the **resource constraints**
[Valerio et al., 2022]
- **Local decision making** → device and model **heterogeneity**, local resources limited

Research direction #1:
What is the effect of different network topologies on the accuracy of decentralized learning?

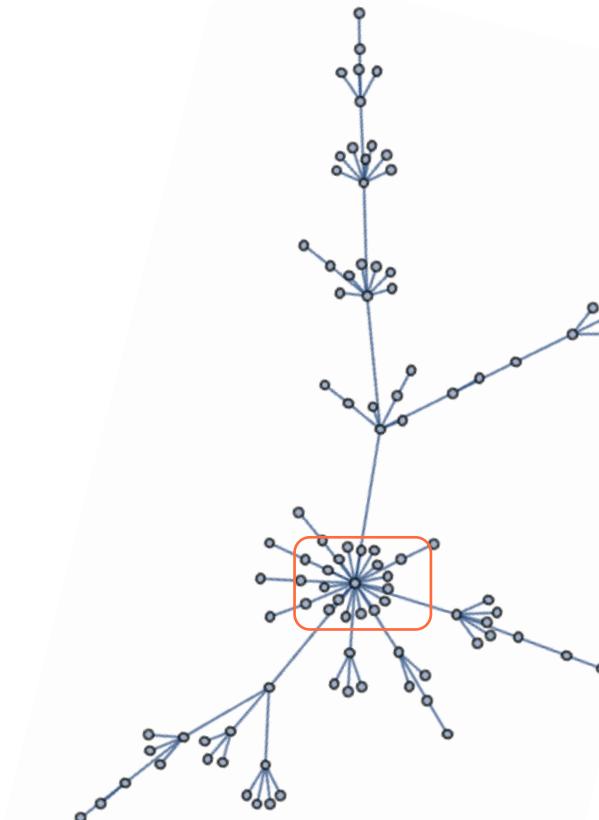
Why it is a crucial problem

Poorly connected nodes



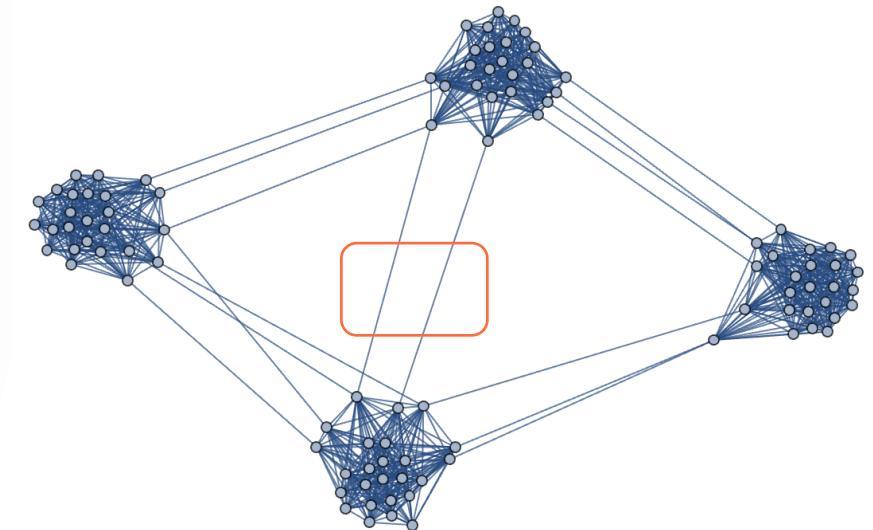
Erdős–Rényi graph

Barabási–Albert graph



Nodes much more
“important” than others

Stochastic Block Model



Communities that are well
connected inside and poorly
connected outside

Experiments

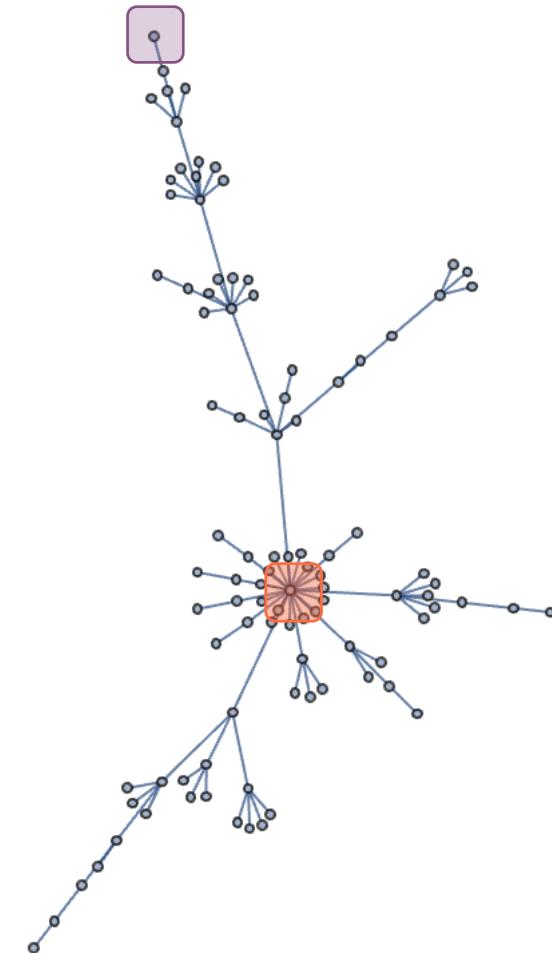
- Data allocation
 - 10 MNIST classes divided into **two groups**

G1 **0 1 2 3 4**

G2 **5 6 7 8 9**

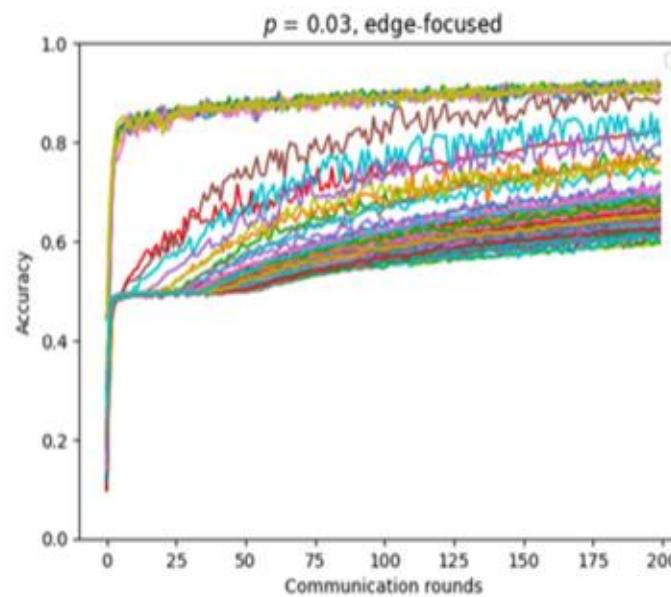
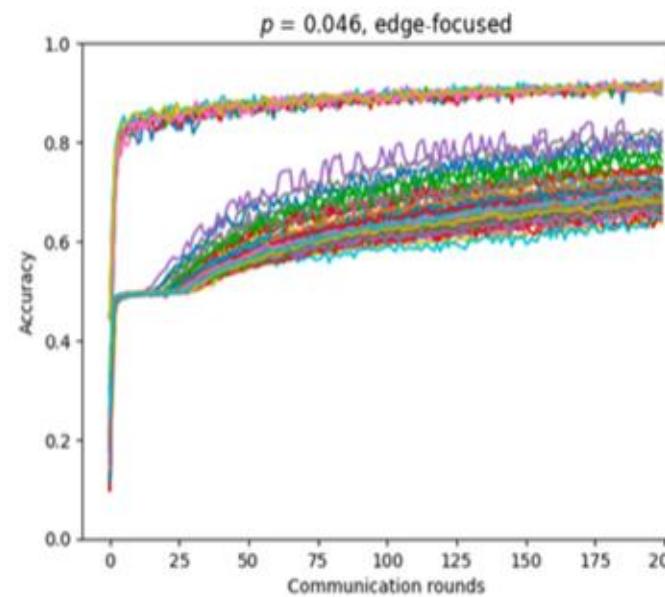
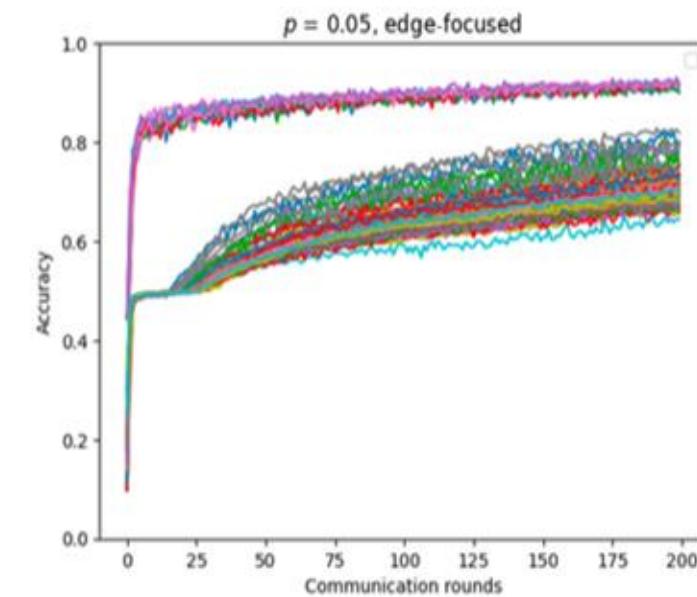
- **All nodes** receive an **equal share** (selected randomly) of data from **G1**.
- Data from **G2** are allocated only to **the 10% highest-degree** vs lowest-degree nodes

- **Three topologies** were considered (all with 100 nodes):
 - Erdős–Rényi, Barabási–Albert, Stochastic block model
- Model aggregation strategy: simple **averaging**



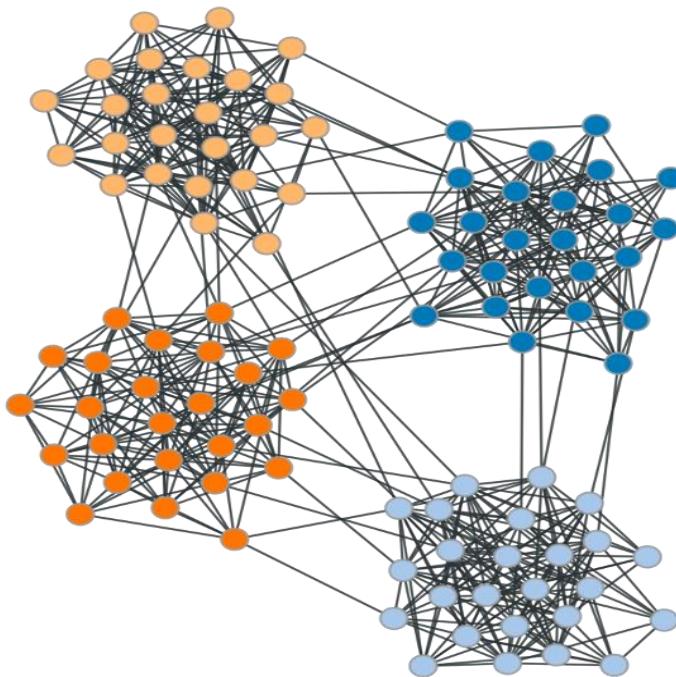
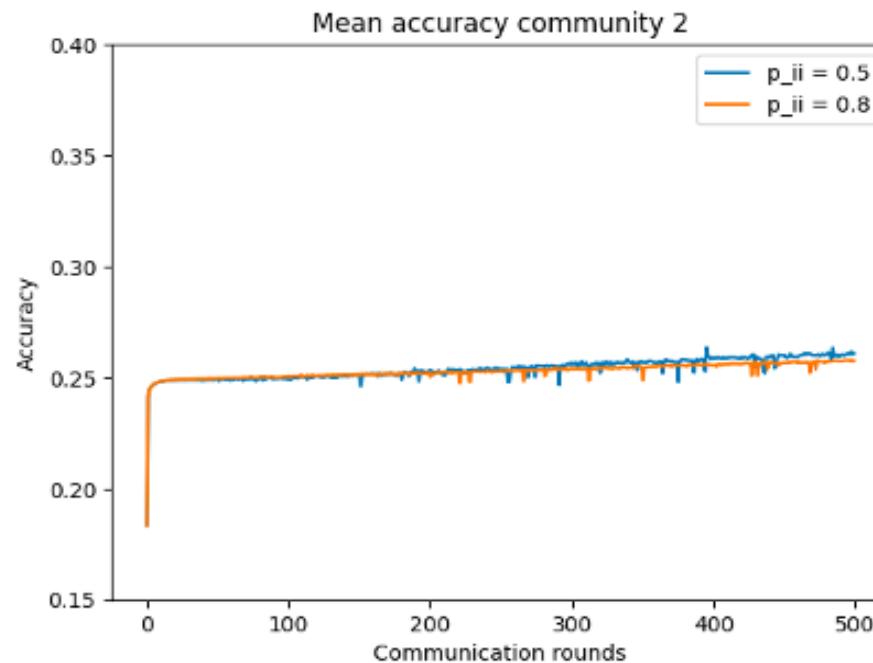
Main results

- the **initial data distribution** on high vs low-degree nodes plays a **key role**
- when low-degree nodes have more knowledge, knowledge spreads **better** when the network is **less connected**
 - **connectivity dilutes knowledge** in average-based dec learning



Main results

- the **initial data distribution** on high vs low-degree nodes plays a **key role**
- when users are grouped in tightly knit communities, it is very **difficult for knowledge to circulate outside** of the community



Selection strategy counts too

- **Betweenness centrality** → How much the node bridges together distant part of the network

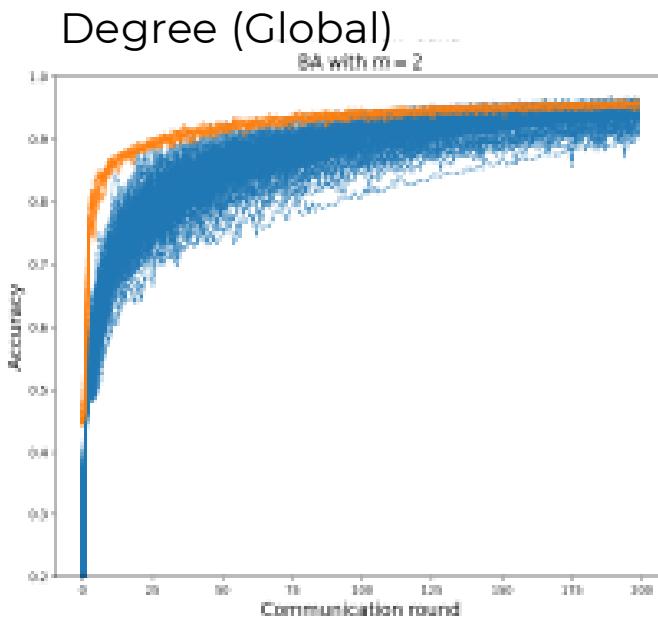
- **Degree centrality** → How much connections does the node have

- **Clustering coefficient** → How much the node is influential within its neighbors

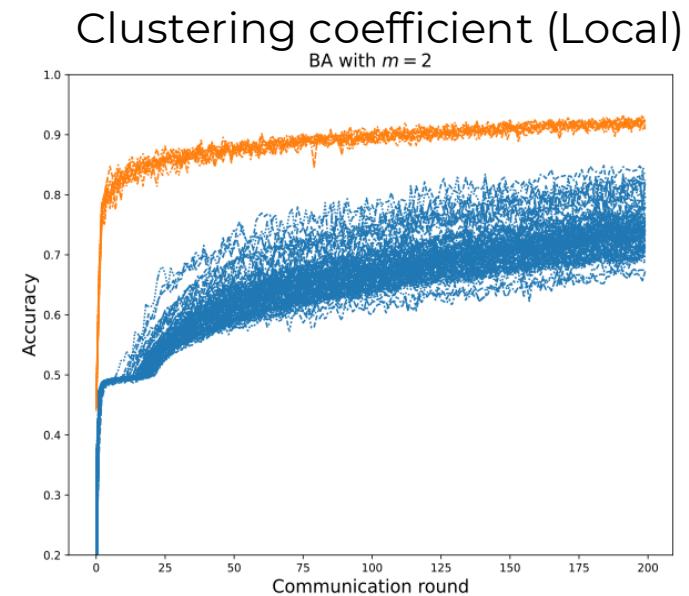
Selection metric counts too

Information flows better when more data is given to nodes that are **globally** more influential.

Highest-focus



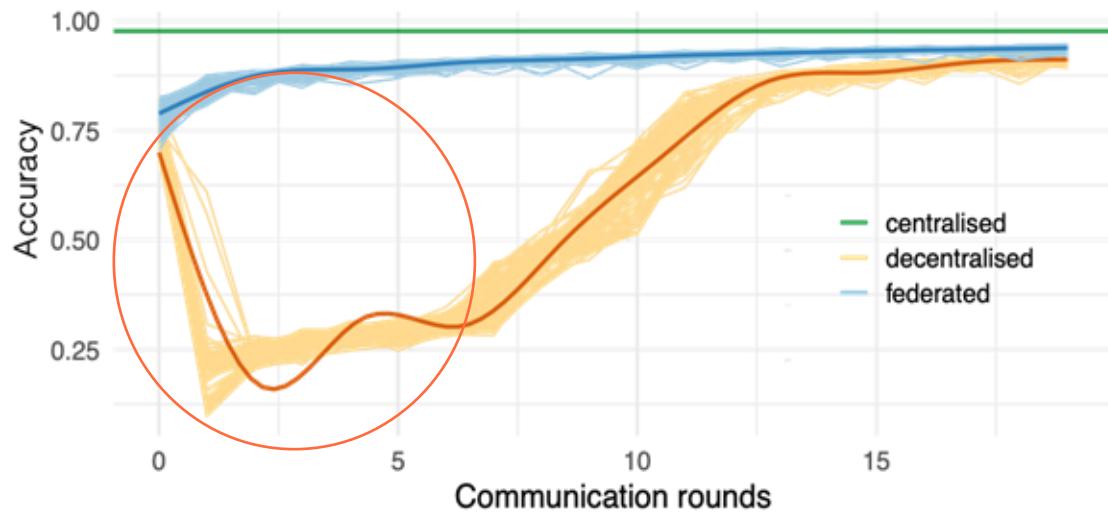
VS



Orange curves: nodes with more data
Blue curves: all the other nodes in the network

Research direction #2: Enhancing local AI models through decentralized collaboration

Aggregation is not easy w/o coordination



The accuracy drops instead of increasing!

Why the drop? It's the lack of coordination

- each node has a **different initialization** of the local (e.g., MLP) model
- due to the **permutation invariance of the hidden layers** of the neural network, coordinate-wise averaging can be **detrimental** without a common initialization
- Non-IID data worsen this effect

Our solution #1: mitigation

Aggregate

Heterogeneity-aware aggregation function (**DecDiff**)
Intuition: give less importance to models that are very different from yours

Train

Boost the learning with a **virtual teacher**
Intuition: introduces a regularization element

Aggregation strategy: beyond Decentralised Federated Average

- DecDiff

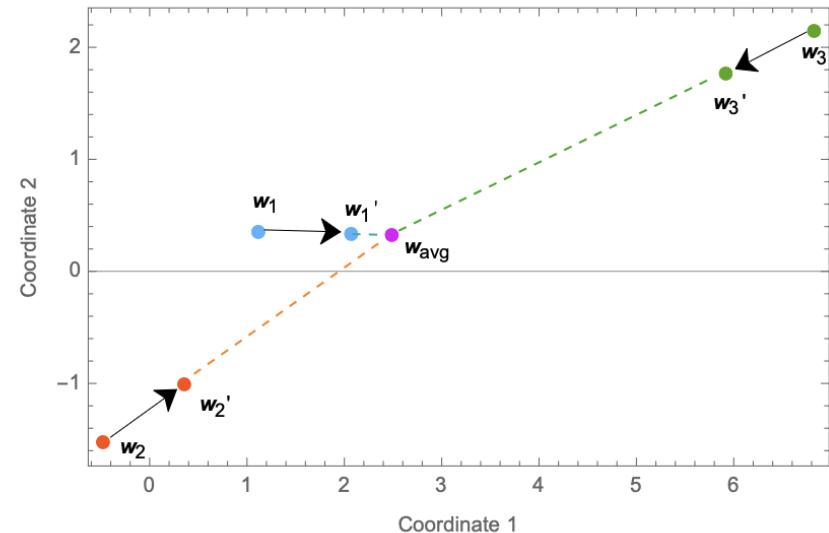
$$\mathbf{w}_i^{(t)} = \mathbf{w}_i^{(t-1)} - \beta_{i,t} \frac{\mathbf{w}_i^{(t-1)} - \bar{\mathbf{w}}_i^{(t-1)}}{\|\mathbf{w}_i^{(t-1)} - \bar{\mathbf{w}}_i^{(t-1)}\|_2 + s}$$

Aggregate

where

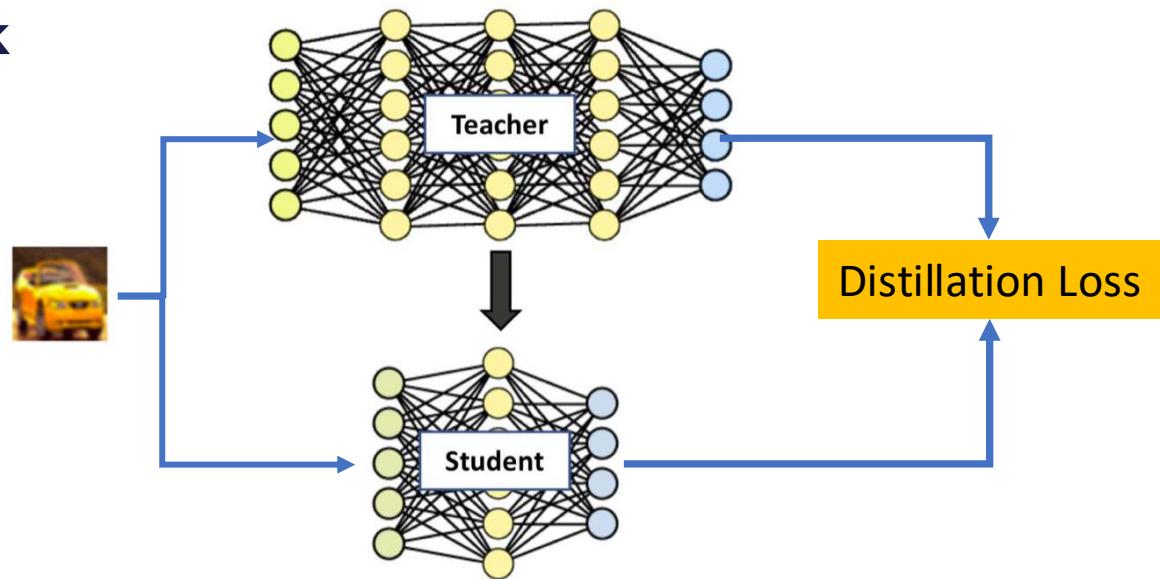
$$\bar{\mathbf{w}}_i^{(t-1)} = \frac{\sum_{\forall j \in \mathcal{N}_i} \omega_{ij} p_{ij} \mathbf{w}_j^{(t-1)}}{\sum_{\forall j \in \mathcal{N}_i} \omega_{ij} p_{ij}}$$

Average model
(from neighbors)



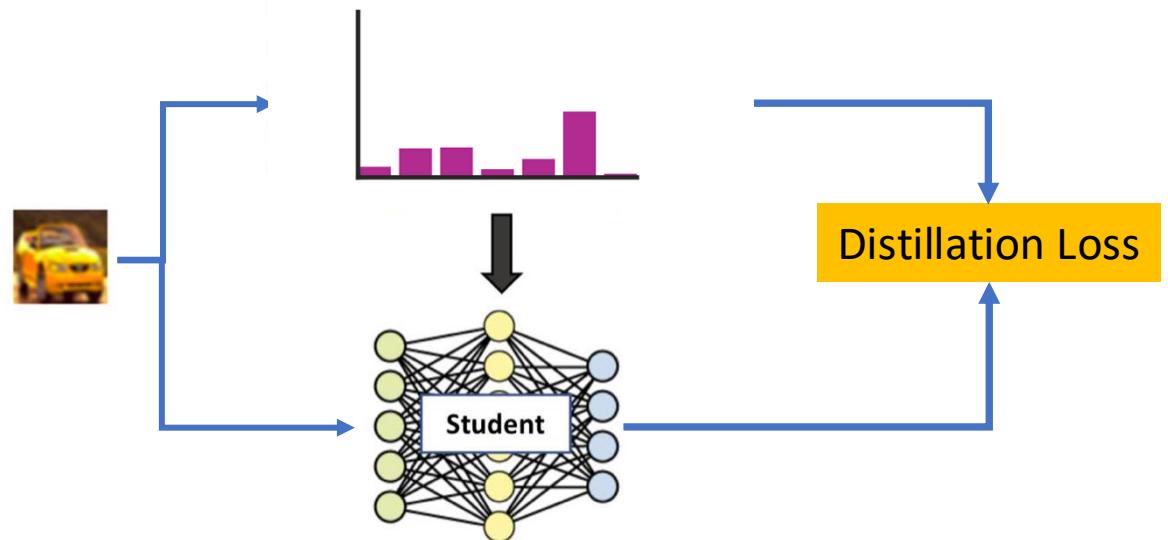
Local training: Based on distillation

- Standard distillation
 - A **student** network tries to **mimic** a **Teacher** network
- Basic assumptions on the *Teacher* network
 - **Larger** and more capable **network**
 - Trained on **more data**



Local training: Based on distillation

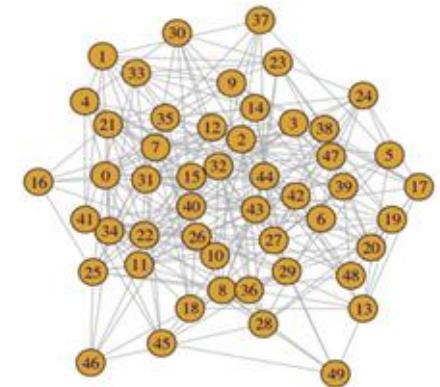
- In decentralised settings:
 - **All devices** are both **teachers and students**
 - Trained on local (small data)
- Potential Issues: computational bottleneck for devices
- Solution: Self-distillation
 - Replace Teacher network with a virtual teacher



Results

- Our DFL vs FL: close performance

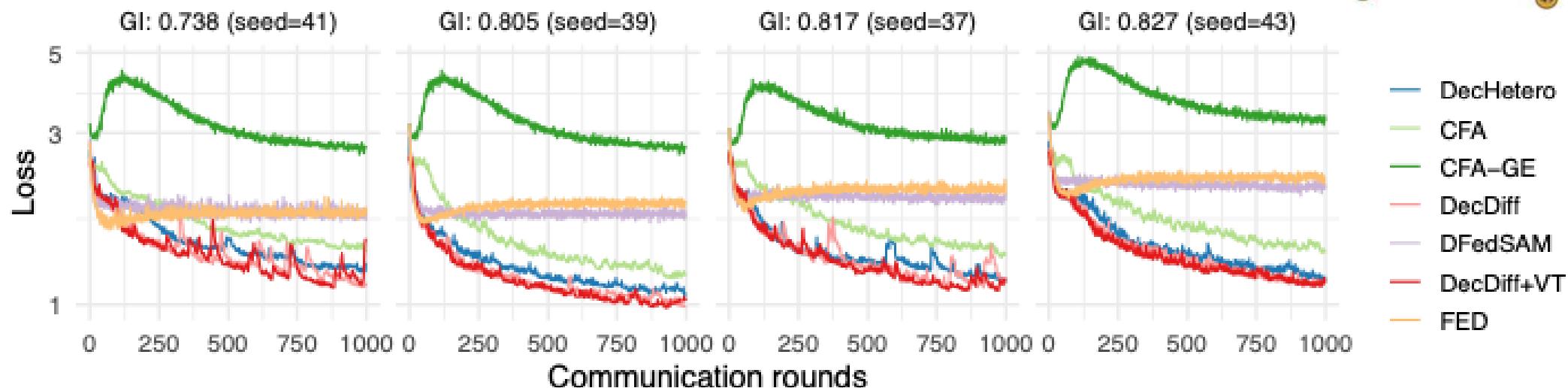
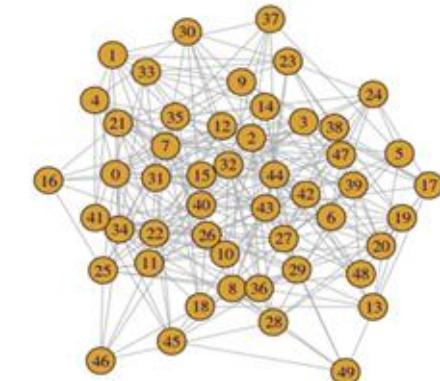
Strategy	Accuracy (avg)	Conf. int.
Centralized	0.918	0
Federated	0.896	0.00204
DecDiff + Virtual Teacher	0.894	0.00206
DecDiff	0.887	0.00463
DecAvg	0.886	0.00173
SOTA benchmark #1	0.859	0.0033
SOTA benchmark #2	0.859	0.0118
No cooperation	0.769	0.0396



Results

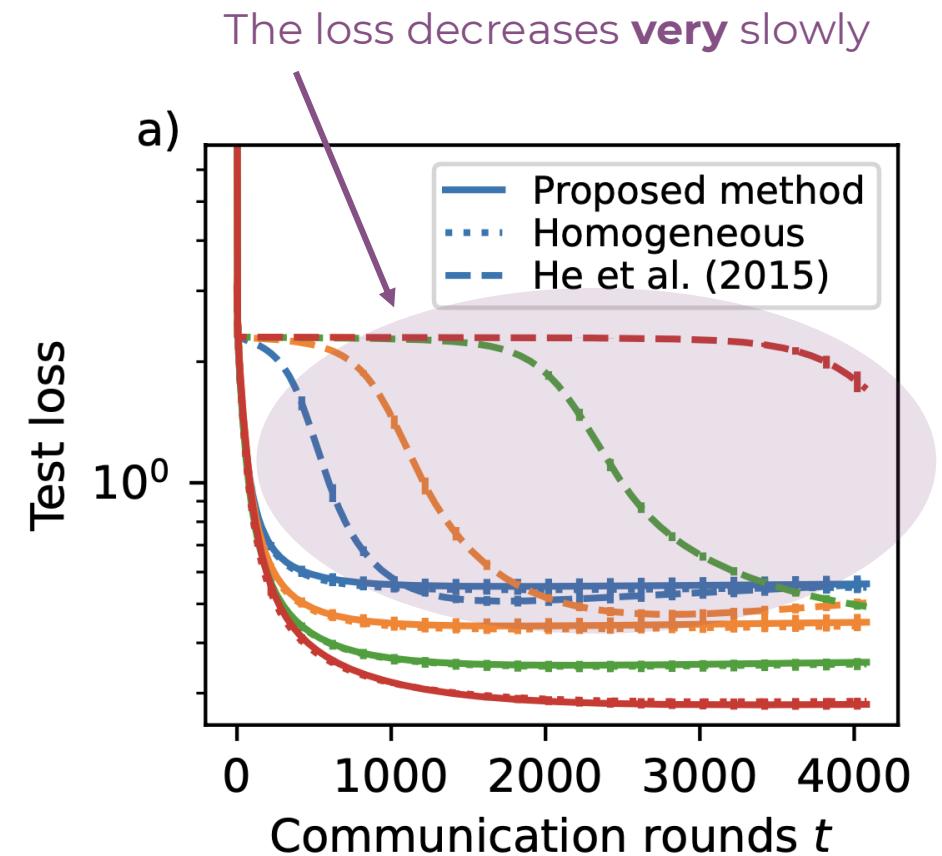
- Faster and best convergence

Dataset: CIFAR10



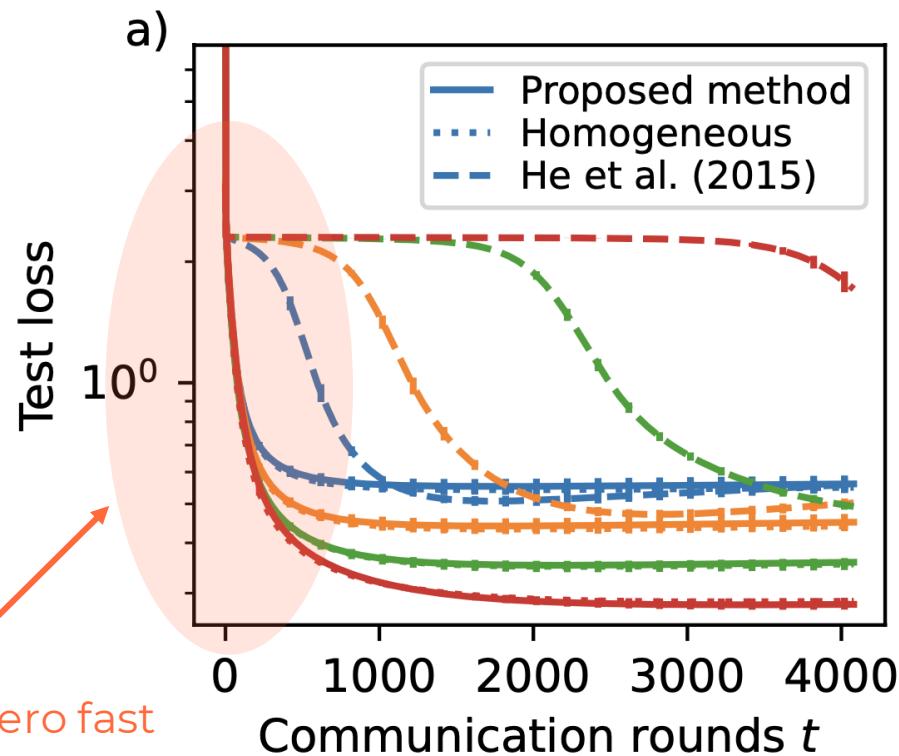
Our solution #2: acceleration

- Standard model initialization (He et al. 2015)
 - weights of layer $l \sim \text{Gaussian}(0, \sigma_l^2)$
- In decentralized, uncoordinated settings, it results in **progressively poorer performance as the number n of nodes grows**
- We propose a novel initialization with gain correction

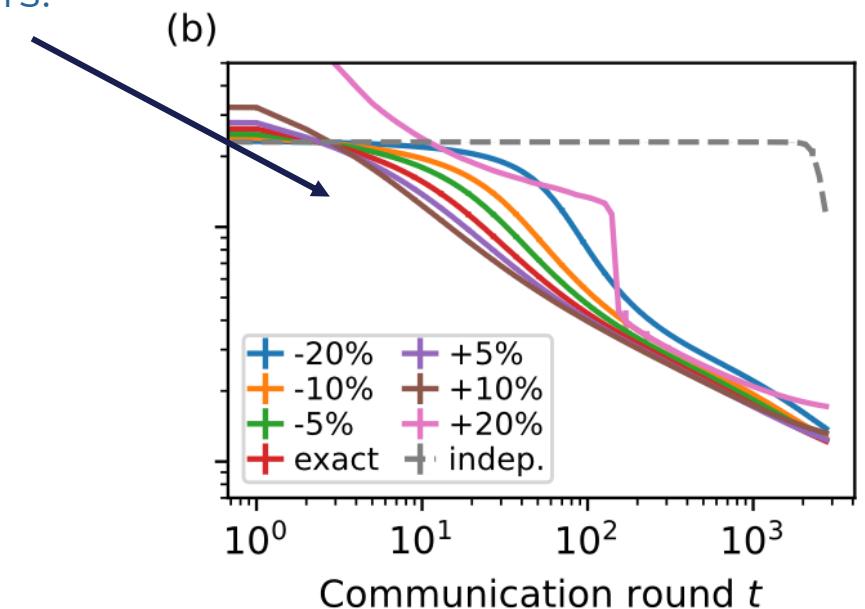


Our solution #2: acceleration

- **HOW:** Use $\sigma_{\text{init}} \cdot \|\mathbf{v}_{\text{steady}}\|^{-1}$, where $\|\mathbf{v}_{\text{steady}}\|$ is the ℓ_2 -norm of the steady-state eigenvector (corresponding to eigenvalue 1) of the Markov matrix A associated with the communication graph G , normalized to have unit sum



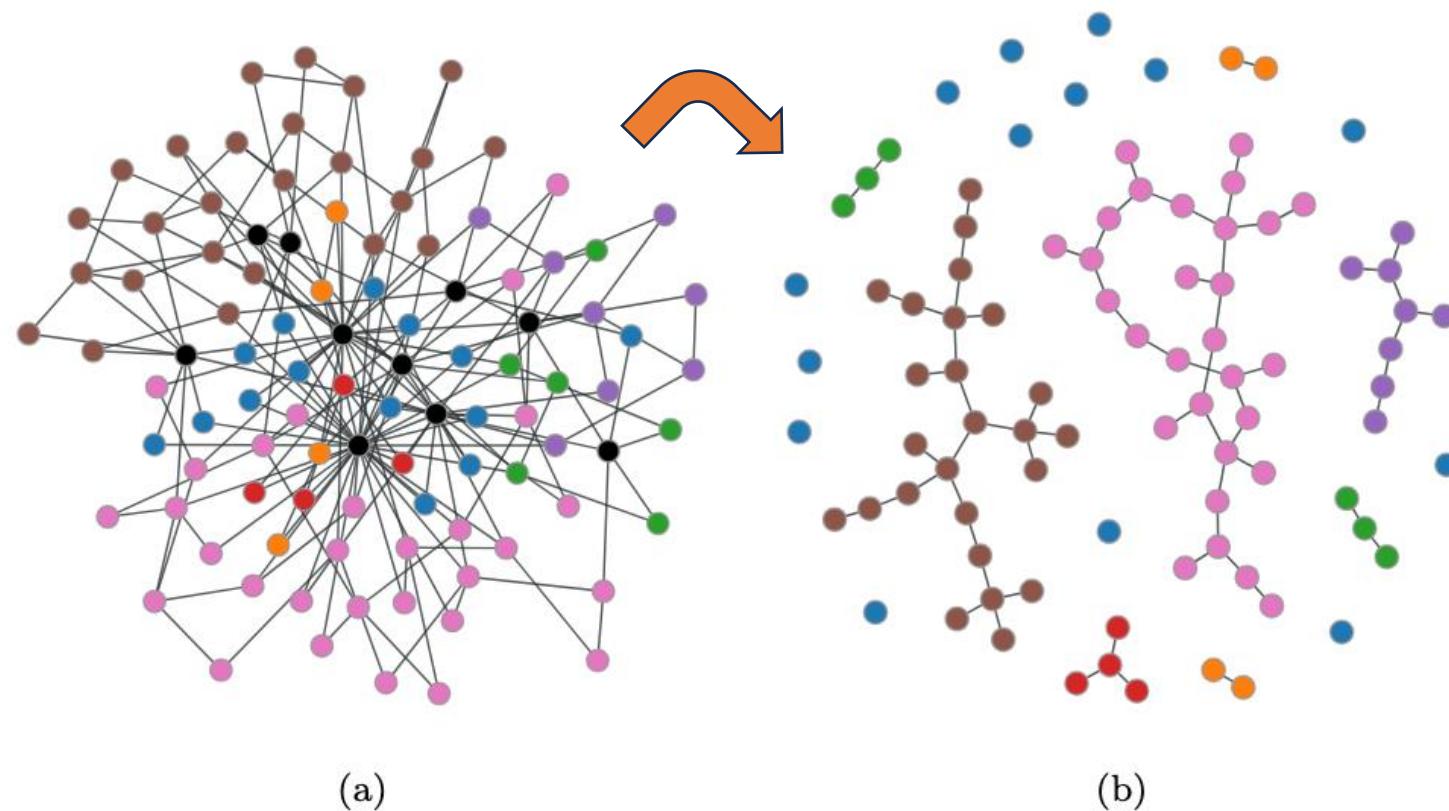
It works better than std init even with large estimation errors!



Research direction #4: Resilience of decentralized learning

Resilience to data and node loss

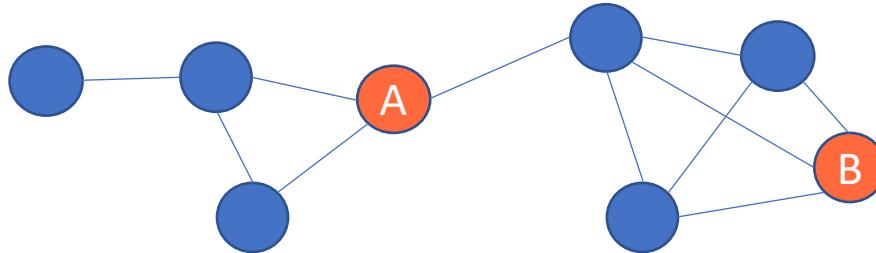
- The **most central nodes** disappear from the network
 - They have data vs they don't have data (IID vs non-IID)



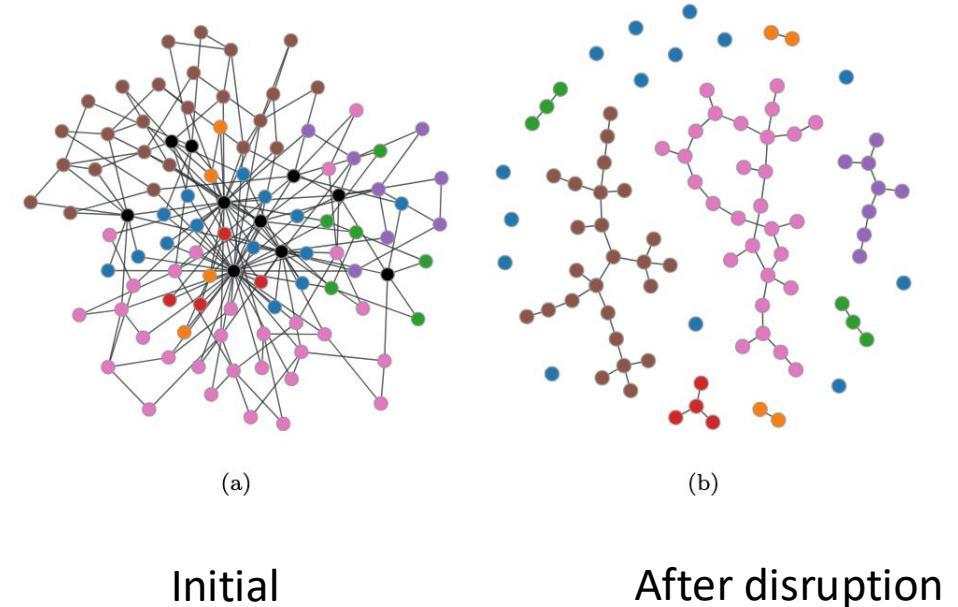
Experimental settings: selection of cut off nodes

How do we disrupt: **switch off nodes** according to their **centrality score**

Centrality score: *Structural holes score (SH)*



We remove top 10% of nodes with highest SH



Disruption analysis

Case 1

How: Highly central nodes have no data assigned

Central nodes role: connectivity only

Case 2

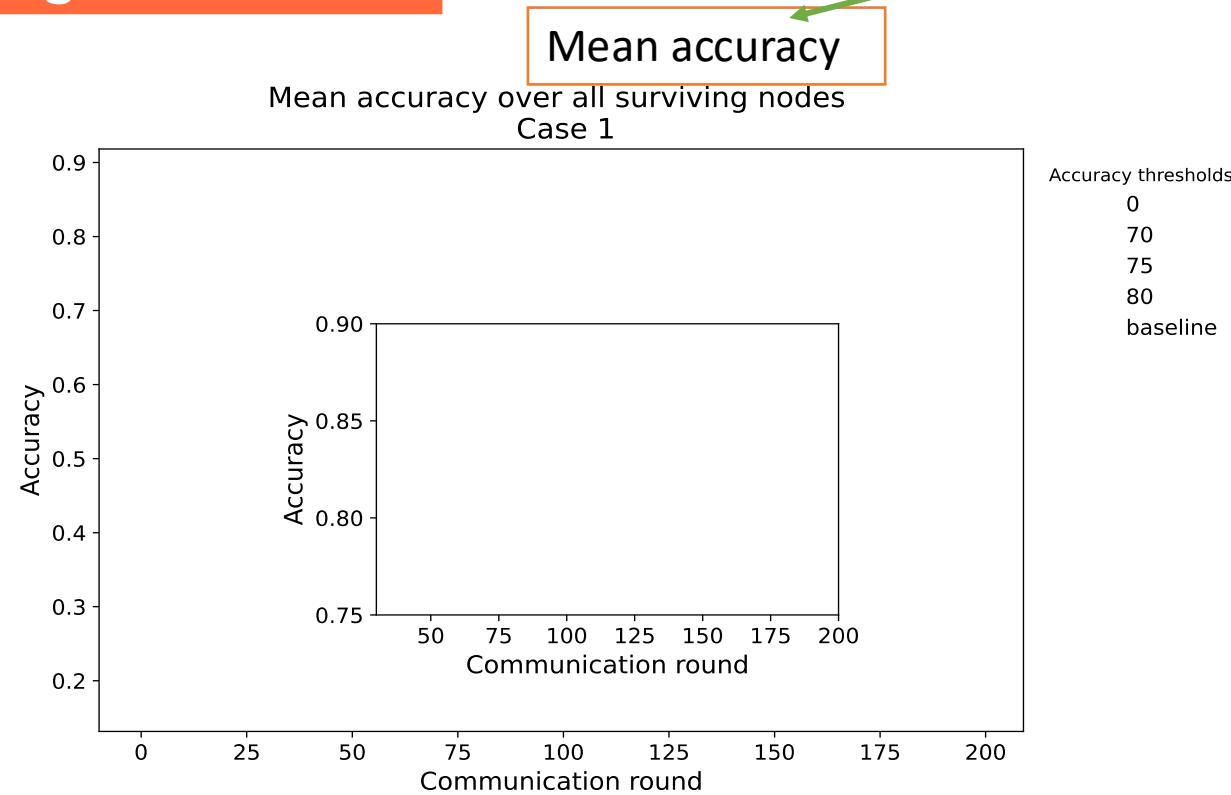
How: central nodes have data

Central nodes role: connectivity + training

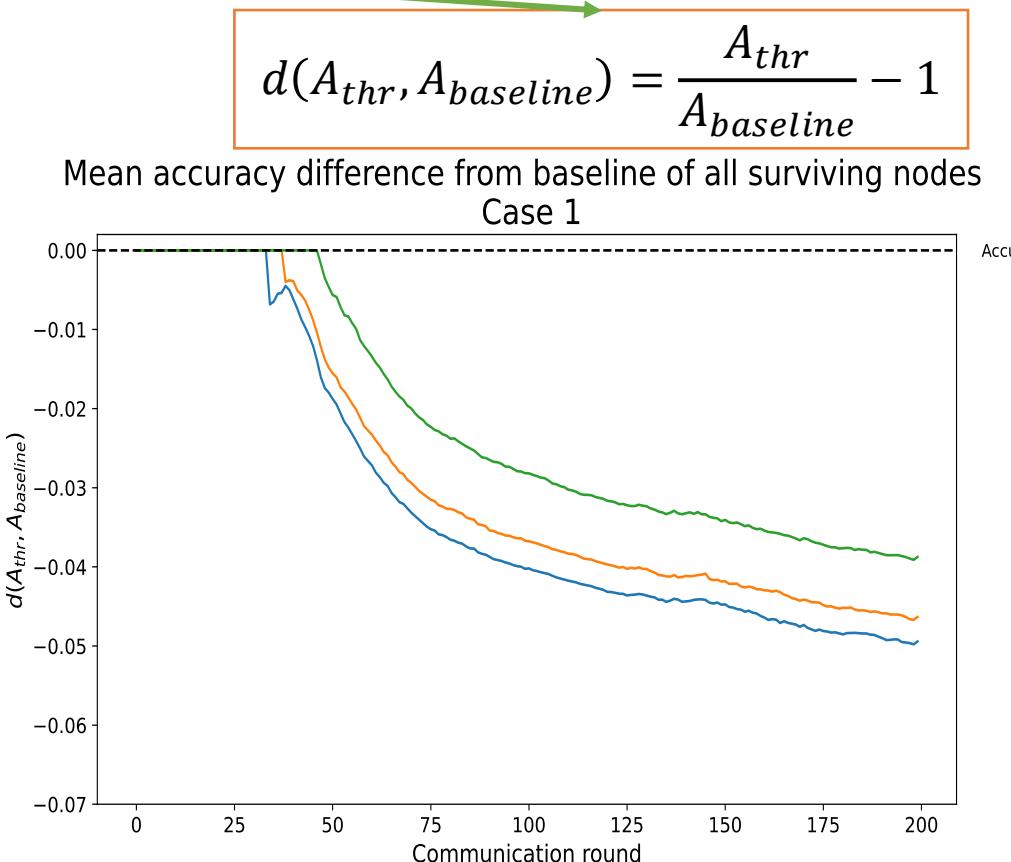
Disruptions happens through time: the $t=0$, $t=2$ and $t=10$

Case 1: connectivity drops

**DFL is robust
against failures**



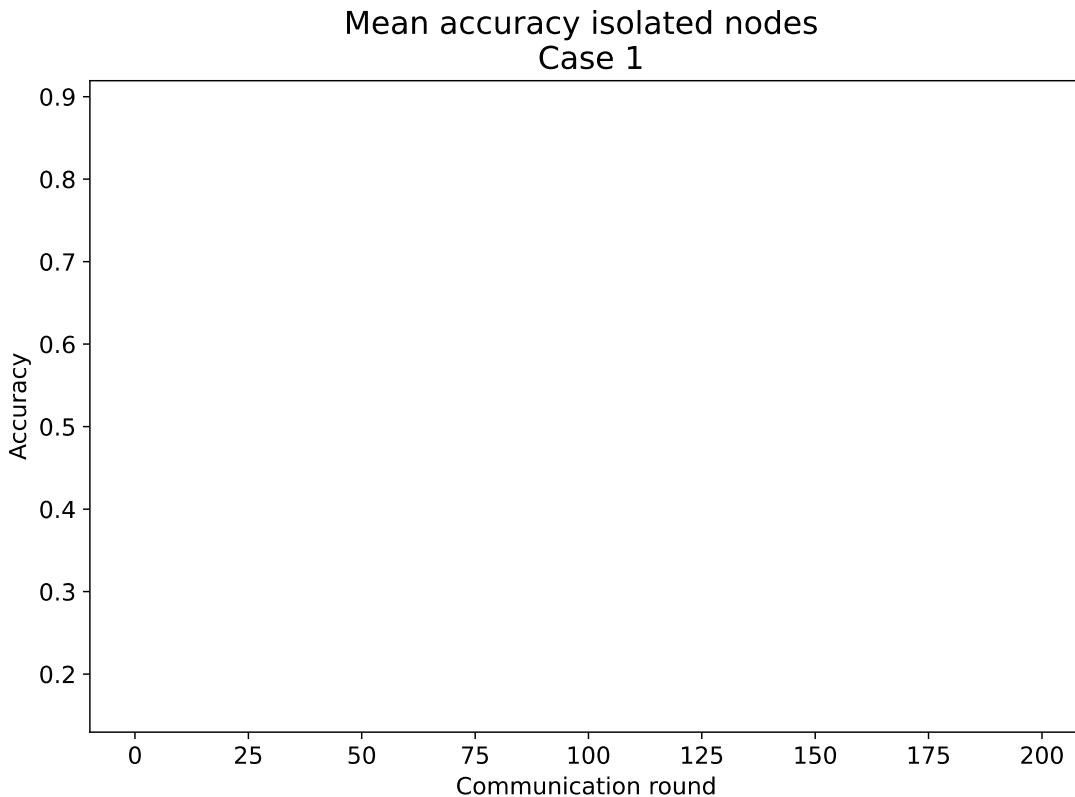
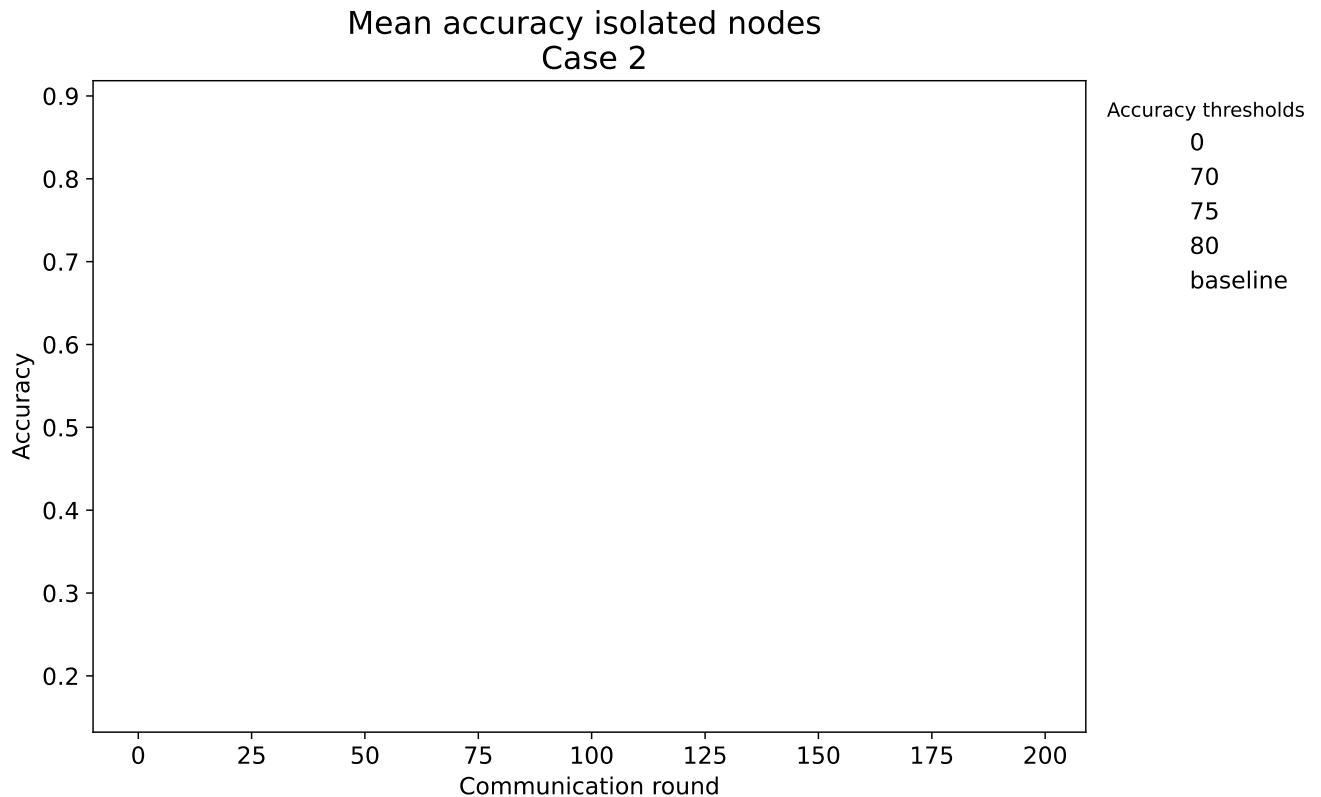
The mean overall accuracy does not change much with respect to the baseline



What happens to isolated nodes? Case 1 vs Case 2

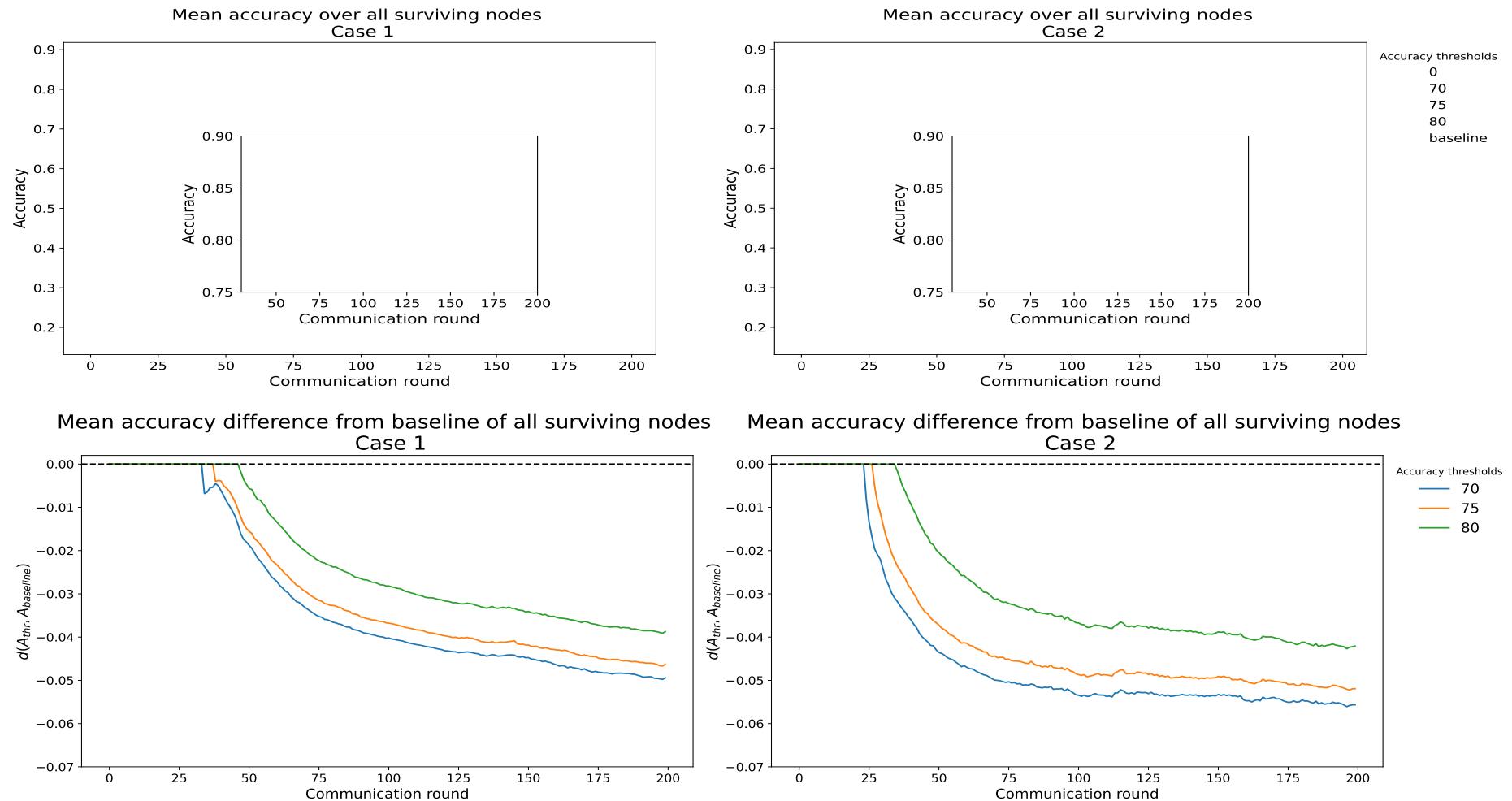
Knowledge
persists

Mean accuracy of the isolated nodes is directly proportional
to the accuracy threshold



The mean accuracy difference from the baseline is similar between Case 1 and Case 2

DFL can tolerate
large loss of data



Key findings

- **Knowledge** acquired before disruption **persists**, and is not lost even by isolated nodes
- **Accuracy** can be recovered **if data is present “somewhere”** in the network
- Even **modest connectivity supports efficient recovery** from failures

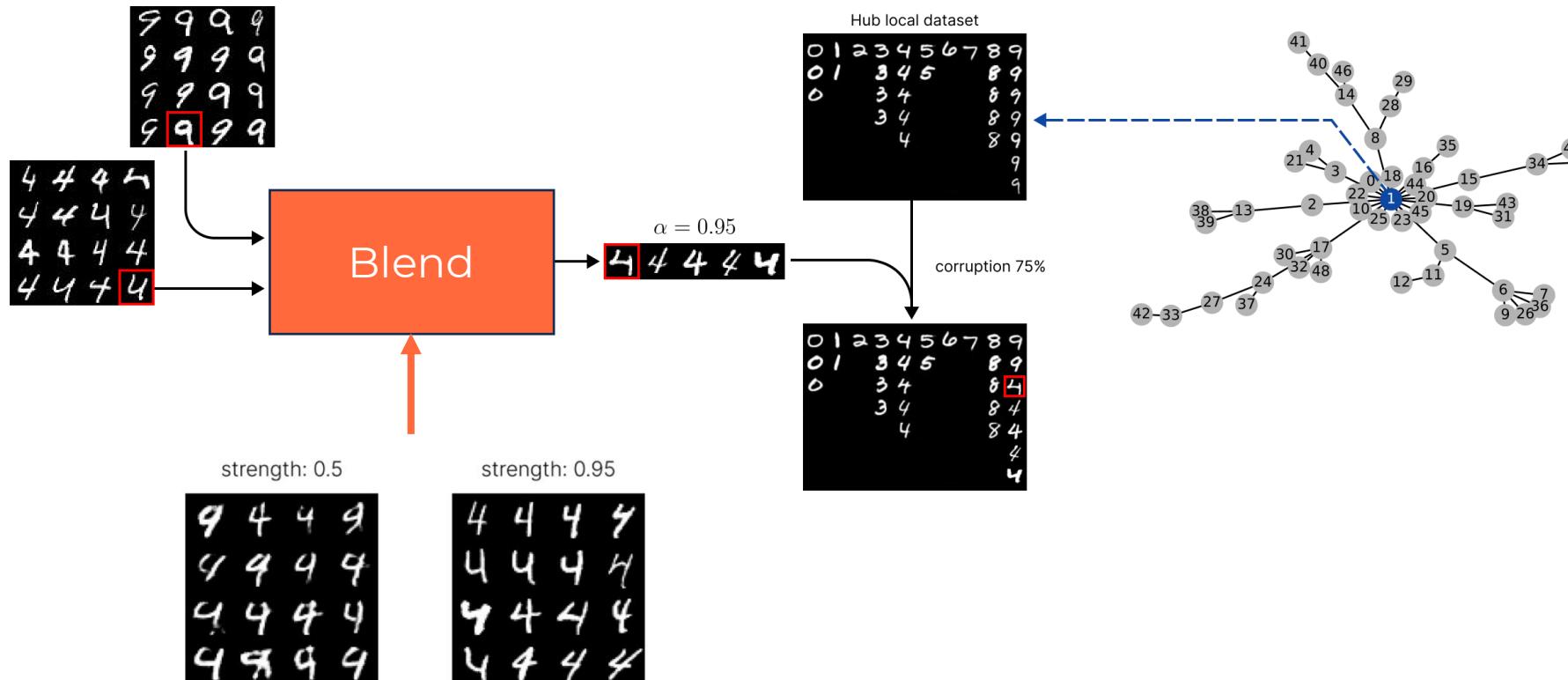
Decentralized learning is robust to all types of disruption

Resilience to low-quality data

- **RQ1:** How **sensitive** is average-based decentralized federated learning **to low-quality or corrupted data?**
- **RQ2:** To what extent is this **sensitivity influenced by the underlying network topology?**

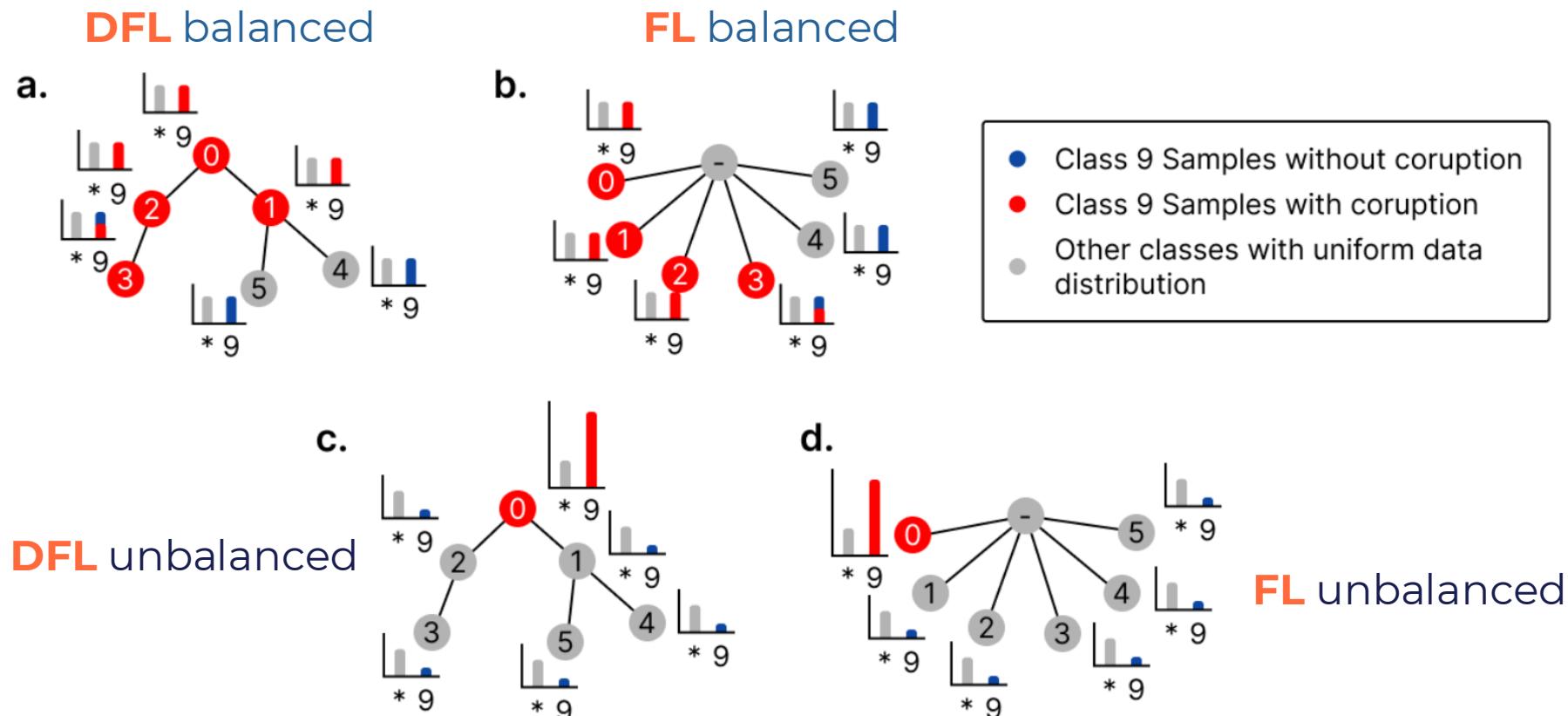
Resilience to low-quality data

- **Low-quality data (i.e., 9s look like 4s, but labelled as 9)**

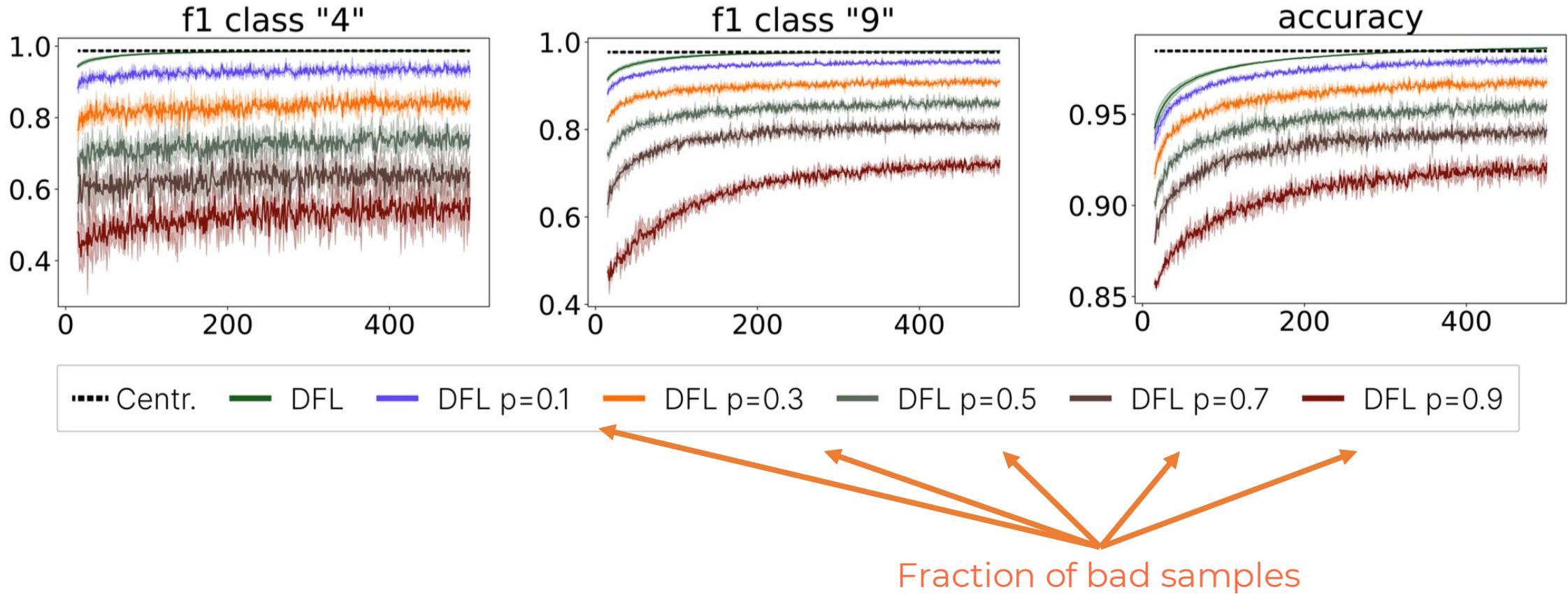


Different types of interpolation

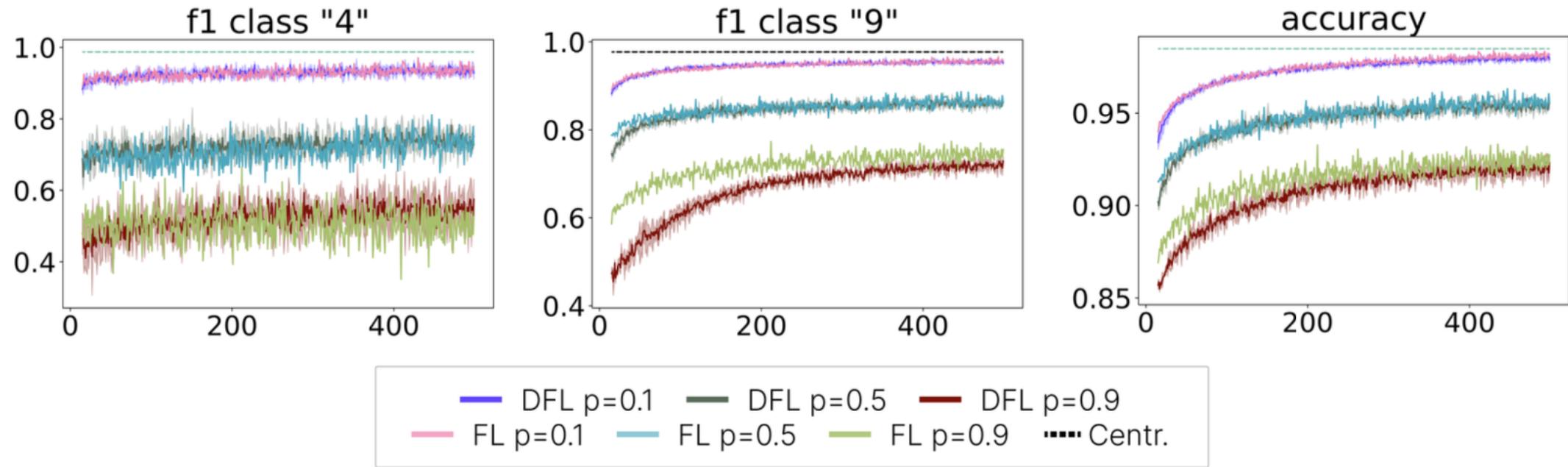
Settings: how bad data is distributed



Impact of corruption: Centralized VS DFL

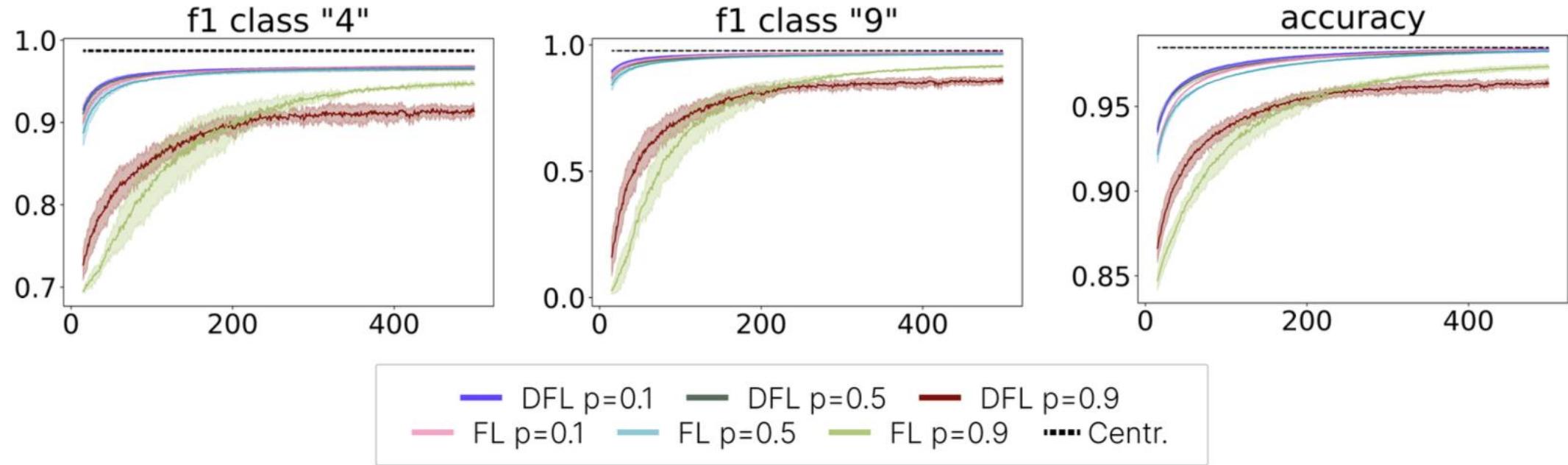


Impact of corruption: **Balanced** corruption – DFL vs FL



No difference!

Impact of corruption: **Unbalanced** corruption – DFL vs FL



FL less susceptible

Both show robustness

To summarize

- **Corruption can hide in accuracy**
 - overall accuracy stays fairly stable
- **Spread beats spike**
 - the same bad-data budget is **far more damaging when dispersed across many nodes**
- **Coordination helps resilience:**
 - **federated (server-based) learning** shows **better long-run robustness** to corruption than fully decentralized learning.

Again, we found that decentralized training is extremely resilient

What's **left** & What's **next**?

To recap...

- We covered:
 - Impact of **network topology**
 - Cope with data and models' **heterogeneity**
 - **Resilience** to bad data/low quality data

What's next

- **Resource limitations**, i.e. quite crucial at the edge
 - Model reduction (pruning/quantization/...)
 - Alternative models, e.g., neuromorphic models and hardware
- Go beyond correlations and introduce **collaborative causality**

What's next

- **Adaptation** to continuously **changing environments**
 - Continual learning
 - Unlearning, i.e., selectively forget concepts.
- Security and privacy:
 - Go **beyond resilience** and explore over **attacks to agents** in decentralized and collaborative environment

Thank you for the attention!

