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What is agentic AI: Definition 

• Agentic AI is an artificial intelligence system that can accomplish a specific 
goal with limited supervision. 

• It consists of AI agents
• machine learning models that mimic human decision-making to solve 

problems in real time. 

• In a multiagent system, each agent can perform a specific subtask required 
to reach the goal and their efforts are coordinated through AI orchestration
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https://www.ibm.com/think/artificial-intelligence?
https://www.ibm.com/think/topics/ai-orchestration


Agentic AI: How do they do it? 

Agentic AI systems can perceive, decide, and act to accomplish goals with 
minimal human intervention.

Key shift vs. traditional AI: closed-loop autonomy

Perception Decision Action

Specific Goal
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Autonomous agents: characteristics

• Autonomy: self-governing decision making

• Reactivity: timely response to environmental changes

• Proactivity: takes initiative to pursue goals

• Goal-oriented behavior: plan → execute → monitor → adapt

• Social ability: communicate, coordinate, negotiate
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Autonomous agents: architectural styles

Reactive Direct perception → action, minimal state (fast)

Deliberative Internal state + planning to reach goals

Hybrid Layered reactive + deliberative control
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Elements of an Agentic AI as a multi-agent system

5 ML4ECS keynote

Coordination: multiple agents work toward common 
or individual goals

Communication & negotiation: share information, 
allocate tasks, resolve conflicts

Emergent behavior: system-level patterns from local 
interactions

Distributed AI: decentralized control + local rules

Orchestrator

A1 A2

A3 A4

A5



Moving Agentic AI @ the edge…

Sense Think Act Learn

Limited compute capability Intermittent connectivity

Locality: fragmented 
local views Lack of coordination

Considering:
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RQ: How do agents share and improve their 
internal models without a central coordinator?



Decentralized federated learning
(as a coordination free learning layer) 
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The goal of DFL @ the edge is to go…
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from this to this
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AI network architectures

THE PAST THE PRESENT
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Benefits of federated learning

- Privacy preservation

- Data security

- Collaboration without data sharing

- Efficient data utilization

- Reduced communication costs

- Increased scalability
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Still, you need the central server to
orchestrate the learning process

• Communication overhead

• Network dependency

• Centralized control and governance
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Fully decentralized learning

Let’s get rid of the central controller, then!

THE FUTURE
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- Peer-to-Peer Communication → how information flows becomes critical 
for learning, which is a by-product of the graph topology connecting 
nodes
[Palmieri et al., 2024] [Palmieri et al., 2023]

- Data localization →  data partitioned across devices, usually in a non-IID 
way, issues of small data
[Ahmad et al., 2025]

- Resilience of collaborative learning → issues of trust, low-quality data, 
malicious nodes
[Sabella et al., 2025]

- No centralized control → lack of coordination
[Valerio et al., 2023] [Badie-Modiri et al., 2024]

- On-device learning → address the resource constraints
[Valerio et al., 2022]

- Local decision making → device and model heterogeneity, local 
resources limited

Challenges of fully decentralized learning
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Research direction #1:
What is the effect of different network 
topologies on the accuracy of decentralized 
learning?
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Why it is a crucial problem

Poorly connected nodes

Nodes much more 
“important” than others

Communities that are well 
connected inside and poorly 

connected outside
Erdős–Rényi graph

Barabási–Albert graph

Stochastic Block Model
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Experiments

• Data allocation
o 10 MNIST classes divided into two groups

o All nodes receive an equal share (selected randomly) of data from 
G1. 

o Data from G2 are allocated only to
the 10% highest-degree vs lowest-degree nodes

• Three topologies were considered (all with 100 nodes): 
o Erdős–Rényi, Barabási–Albert, Stochastic block model

• Model aggregation strategy: simple averaging

G1 G2
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• the initial data distribution on high vs low-degree nodes plays a key role

• when low-degree nodes have more knowledge, knowledge spreads better when the 
network is less connected
o connectivity dilutes knowledge in average-based dec learning

Main results

Palmieri, L., Boldrini, C., Valerio, L., Passarella, A., & Conti, M. (2024). Impact of 
network topology on the performance of Decentralized Federated Learning. 
Computer Networks 2024.
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• the initial data distribution on high vs low-degree nodes plays a key role

•

when users are grouped in tightly knit communities, it is very difficult for knowledge 
to circulate outside of the community

Main results

Palmieri, L., Boldrini, C., Valerio, L., Passarella, A., & Conti, M. (2024). Impact of 
network topology on the performance of Decentralized Federated Learning. 
Computer Networks 2024.
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Selection strategy counts too

• Betweenness centrality → How much the node bridges together distant 
part of the network

• Degree centrality → How much connections does the node have

• Clustering coefficient → How much the node is influential within its 
neighbors

Global

Local
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Selection metric counts too

Information flows better when more data is given to nodes that are globally more influencial.

Orange curves: nodes with more data
Blue curves: all the other nodes in the network

Degree (Global)

Highest-focus

Clustering coefficient (Local)

vs
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Research direction #2:
Enhancing local AI models through 
decentralized collaboration
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Why the drop? It’s the lack of 
coordination

• each node has a different initialization 
of the local (e.g., MLP) model

• due to the permutation invariance of 
the hidden layers of the neural network, 
coordinate-wise averaging can be 
detrimental without a common 
initialization

• Non-IID data worsen this effect

Aggregation is not easy w/o coordination

The accuracy drops instead of 
increasing!
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Our solution #1: mitigation

Heterogeneity-aware aggregation function (DecDiff)
Intuition: give less importance to models that are very 
different from yours

Boost the learning with a virtual teacher
Intuition: introduces a regularization element
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Aggregation strategy: beyond Decentralised Federated Average

• DecDiff

where

Average model 
(from neighbors)

Valerio, L., Boldrini, C., Passarella, A., Kertész, J., Karsai, M., & Iñiguez, G. (2023). 
Coordination-free Decentralised Federated Learning on Complex Networks: 
Overcoming Heterogeneity. arXiv preprint arXiv:2312.04504.
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Local training: Based on distillation

• Standard distillation
• A student network tries to mimic a Teacher network

• Basic assumptions on the Teacher network 
• Larger and more capable network
• Trained on more data

Distillation Loss

Valerio, L., Boldrini, C., Passarella, A., Kertész, J., Karsai, M., & Iñiguez, G. (2023). 
Coordination-free Decentralised Federated Learning on Complex Networks: 
Overcoming Heterogeneity. arXiv preprint arXiv:2312.04504.
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Local training: Based on distillation

• In decentralised settings: 
• All devices are both teachers 

and students
• Trained on local (small data)

• Potential Issues: computational 
bottleneck for devices

• Solution: Self-distillation
• Replace Teacher network with a 

virtual teacher

Distillation Loss

Valerio, L., Boldrini, C., Passarella, A., Kertész, J., Karsai, M., & Iñiguez, G. (2023). 
Coordination-free Decentralised Federated Learning on Complex Networks: 
Overcoming Heterogeneity. arXiv preprint arXiv:2312.04504.
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• Our DFL vs FL: close performance

Results 

Strategy Accuracy (avg) Conf. int.

Centralized 0.918 0

Federated 0.896 0.00204

DecDiff + Virtual Teacher 0.894 0.00206

DecDiff 0.887 0.00463

DecAvg 0.886 0.00173

SOTA benchmark #1 0.859 0.0033

SOTA benchmark #2 0.859 0.0118

No cooperation 0.769 0.0396

Valerio, L., Boldrini, C., Passarella, A., Kertész, J., Karsai, M., & Iñiguez, G. (2023). 
Coordination-free Decentralised Federated Learning on Complex Networks: 
Overcoming Heterogeneity. arXiv preprint arXiv:2312.04504.
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• Faster and best convergence

Results 

Valerio, L., Boldrini, C., Passarella, A., Kertész, J., Karsai, M., & Iñiguez, G. (2023). 
Coordination-free Decentralised Federated Learning on Complex Networks: 
Overcoming Heterogeneity. arXiv preprint arXiv:2312.04504.
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• Standard model initialization (He et al. 2015)
• weights of layer l ~ Gaussian(0, σl

2)

• In decentralized, uncoordinated settings, it 
results in progressively poorer performance 
as the number n of nodes grows

• We propose a novel initialization with gain 
correction

Our solution #2: acceleration

Badie-Modiri, A., Boldrini, C., Valerio, L., Kertész, J., & Karsai, M. (2025). Initialisation and 
Topology Effects in Decentralised Federated Learning. Springer Applied Network Science. 
arXiv preprint arXiv:2403.15855.

The loss decreases very slowly
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• HOW: Use σinit · ∥vsteady∥
−1, where ∥vsteady∥ is the ℓ2-norm of the steady-state 

eigenvector (corresponding to eigenvalue 1) of the Markov matrix A associated 
with the communication graph G, normalized to have unit sum

Our solution #2: acceleration

Badie-Modiri, A., Boldrini, C., Valerio, L., Kertész, J., & Karsai, M. (2024). Initialisation and 
Topology Effects in Decentralised Federated Learning. R1 under review at Applied Network 
Science. arXiv preprint arXiv:2403.15855.

Now, it goes to zero fast

It works better than std init 
even with large estimation 
errors!

ML4ECS'2634



Research direction #4:
Resilience of decentralized learning 
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• The most central nodes disappear from the network
• They have data vs they don’t have data (IID vs non-IID)

Resilience to data and node loss
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Experimental settings: selection of cut off nodes

How do we disrupt: switch off nodes 
according to their centrality score

Centrality score: Structural holes score (SH)

We remove top 10% of nodes with highest SH 

A

B

Initial After disruption

Palmieri, L., Boldrini, C., Valerio, L., Passarella, A., Conti, M., & Kertész, J. (2025). 
Robustness of decentralised learning to nodes and data disruption. Computer 
Communications, 2025.

ML4ECS'2637



Disruption analysis

Case 1

How: Highly central nodes have no data 
assigned

Central nodes role: connectivity only

Case 2

How: central nodes have data

Central nodes role: connectivity + training

Disruptions happens through time: the t=0, t=2 and t=10

10% accuracy curve 50% accuracy curve
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DFL is robust 
against failures

Mean accuracy
𝑑 𝐴𝑡ℎ𝑟 , 𝐴𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =

𝐴𝑡ℎ𝑟

𝐴𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
− 1

The mean overall accuracy does not change much with 
respect to the baseline

Case 1: connectivity drops 
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Knowledge 
persists

Mean accuracy of the isolated nodes is directly proportional 
to the accuracy threshold

What happens to isolated nodes? Case 1 vs Case 2
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DFL can tolerate 
large loss of data

The mean accuracy difference from the baseline is similar between Case 1 and Case 2
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Key findings

• Knowledge acquired before disruption persists, and is not lost even by 
isolated nodes

• Accuracy can be recovered if data is present “somewhere” in the network

• Even modest connectivity supports efficient recovery from failures

Decentralized learning is robust to all types of disruption

Concluding
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• RQ1: How sensitive is average-based decentralized federated learning to low-
quality or corrupted data?

• RQ2: To what extent is this sensitivity influenced by the underlying network 
topology?

Resilience to low-quality data 

Sabella, S., Boldrini, C., Valerio, L., Passarella, A., & Conti, M. (2025). The Built-In 
Robustness of Decentralized Federated Averaging to Bad Data. IJCNN 2025 
arXiv:2502.18097.
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• Low-quality data (i.e., 9s look like 4s, but labelled as 9)

Resilience to low-quality data 

Sabella, S., Boldrini, C., Valerio, L., Passarella, A., & Conti, M. (2025). The Built-In 
Robustness of Decentralized Federated Averaging to Bad Data. IJCNN 2025 
arXiv:2502.18097.

Different types of interpolation

Blend
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Settings: how bad data is distributed

DFL balanced FL balanced

DFL unbalanced
FL unbalanced
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Impact of corruption: Centralized VS DFL

Fraction of bad samples
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Impact of corruption: Balanced corruption – DFL vs FL

No difference!
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Impact of corruption: Unbalanced corruption – DFL vs FL

FL less susceptible Both show robustness
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To summarize

• Corruption can hide in accuracy
• overall accuracy stays fairly stable

• Spread beats spike
• the same bad-data budget is far more damaging when dispersed across 

many nodes

• Coordination helps resilience: 
• federated (server-based) learning shows better long-run robustness to 

corruption than fully decentralized learning.

Again, we found that decentralized training is extremely resilient
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What’s left & What’s next? 
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To recap…

• We covered: 

• Impact of network topology

• Cope with data and models’ heterogeneity

• Resilience to bad data/low quality data
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What’s next

• Resource limitations, i.e. quite crucial at the edge
• Model reduction (pruning/quantization/…)
• Alternative models, e.g., neuromorphic models and hardware

• Go beyond correlations and introduce collaborative causality
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What’s next

• Adaptation to continuously changing environments
• Continual learning 
• Unlearning, i.e., selectively forget concepts. 

• Security and privacy:
• Go beyond resilience and explore over attacks to agents in decentralized 

and collaborative environment
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Thank you for the attention!
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